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Summary 
While energy poverty has been recognised as a societal problem in the United Kingdom since 1970, it 

has only recently gained attention from policy makers of the Dutch national government. Although 

increasing in the past few years, research about energy poverty in the Netherlands remains in its 

infancy. Furthermore, policies aimed at reducing energy poverty in the Netherlands have only been 

introduced recently while the amount of households with energy poverty have increased in the past 

years. A household that experiences energy poverty cannot meet their energy needs unless expenses 

are made to other necessary common consumables. Energy poverty remains a relevant societal 

problem and it can therefore be beneficial to increase the knowledge about energy poverty trough 

research. If energy poverty is analysed and mapped in a clearer and more detailed way, this can help 

to reduce the occurrence of energy poverty and help with the energy transition. 

Currently, various indicators are used to assess if a household has energy poverty. Using these 

indicators, the determination if a household has energy poverty is often only based on two factors 

thereby ignoring many relevant factors for determining energy poverty. Additionally, the existing 

indicators do not present energy poverty as a continuous value and only determine if a household has 

energy poverty or does not have energy poverty. Because of this, the current energy poverty 

indicators cannot be used to determine how close households are to experience energy poverty or 

how close they are to solving their energy poverty problems. Furthermore, since the existing indicators 

use different factors to determine if a household has energy poverty, a household may experience 

energy poverty according to one indicator and not according to another one.  

This research aims to improve the method of identifying energy poverty for households through the 

research question: Can a new model be created that predicts the risk of energy poverty? In order to 

answer this research question, research on energy poverty is reviewed and relevant factors are 

identified from this literature. In existing research, the energy quote (EQ), low income, high costs 

(LIHC), minimum income standard (MIS), housing costs overburden rate (HCOR), and the low income 

low energy quality (LILEQ) indicators are used to determine the presence of energy poverty. The 

literature review shows that multiple factors with an effect on energy poverty are already included in 

the existing indicators. However, at the same time, most existing energy poverty indicators do not 

include dwelling and personal characteristics that have a relation with energy poverty according to 

the literature review. 

Based on the findings of the literature review, a conceptual model is constructed in which all relations 

between characteristics found in the literature review are included. All relevant variables are selected 

from the Woononderzoek Nederland (WoON 2021) dataset and the data is processed and prepared 

for multiple analyses. A descriptive analysis is conducted to visualise the dataset and filter outliers and 

value categories with few respondents from the dataset. After this analysis, multiple bivariate analyses 

are performed in order to determine the sample representativeness and to test for multicollinearity 

between independent variables. The results of these analyses show that the data sample is very 

representative for the social housing stock of the Netherlands and that there is almost no 

multicollinearity between the independent variables. Because of a high correlation between two 

variables, a variable is removed from the dataset in order to increase the reliability of the results of 

further analyses. 
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An exploratory factor analysis (EFA) is conducted to determine if all existing energy poverty indicators 

measure the same latent concept. All existing indicators included in the EFA show large factor loadings 

except for the MIS indicator. The results of the EFA show that all included existing energy poverty 

indicators measure the same common latent concept except for the MIS indicator. Because of this, 

the MIS indicator is removed from further analyses. 

A structural equation model is made based on the conceptual model and structural equation 

modelling (SEM) is used to estimate the path coefficients of the model based on more than 8,500 

subsamples. The results of the SEM show that most path coefficients are statistically significant except 

for a few value categories of some categorical variables. Furthermore, the results show that all path 

coefficients between the degree of urbanisation categories and income are non-significant. This 

finding indicates that there is no indirect relation between the degree of urbanisation and energy 

poverty through income. All statistically significant path coefficients are interpreted to determine the 

relations between all variables in the model and energy poverty. 

An energy poverty risk prediction model is created based on the statistically significant path 

coefficients estimated by the SEM. Using all relevant factors identified in the literature review 

connected with the path coefficients of the SEM, the prediction model can determine the energy 

poverty risk index (EPRI) for all respondents of the WoON 2021 dataset. The results of the EPRI 

calculations for all respondents of the WoON 2021 dataset show that the EPRI has a relation with the 

other existing energy poverty indicators. Furthermore, a descriptive analysis of the respondents with 

a high EPRI is conducted in order to determine the characteristics of respondents that are 

overrepresented in the group with a high EPRI. The comparison between the descriptive analyses 

show that single-person and single-parent households with a low education living in neighbourhoods 

with a lower degree of urbanisation are overrepresented in the group with a high EPRI. Furthermore, 

the results show that there are relatively few households in the group with a high EPRI that live in 

dwellings constructed after 1992. 

The EPRI prediction model is used to evaluate several policies and future scenarios. These predictions 

show that increasing energy price will increase the energy poverty risk for many respondents. 

Furthermore, the created EPRI model shows that the current government policy to reduce energy 

poverty may not be effective. Because the benefits of this policy are granted solely based on the 

income of a household, they are often granted to households that do not experience energy poverty 

instead of households that do experience energy poverty. Further results of the predictions show that 

improving the energy performance of dwellings reduce the EPRI more effectively.  

The EPRI facilitates a simple and clear identification of risk groups and analysis of policy effects. It 

includes a large amount of factors to predict the energy poverty risk on a continuous scale, which 

enables a more accurate evaluation of the effect of policies compared to the existing energy 

indicators. The existing energy poverty indicators only predict “energy poverty or no energy poverty” 

and can therefore not predict how close a household is to experiencing energy poverty or how close 

they are to avoid energy poverty. The EPRI can be a useful tool to identify energy poverty risks for 

housing corporations and the government. Housing corporations can use the EPRI to more effectively 

identify dwellings in need of renovations to improve their energy efficiency. The government can use 

the EPRI to gain a clear overview where there are high and low energy poverty risks so they can more 

effectively target their allowances and other subsidies aimed at reducing energy poverty.  
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1. Introduction 

1.1 Background 
At the beginning of May 2023, the Dutch minister for climate announced a new package of measures 

to reduce CO2 emissions. This package focuses on “greening” residential, commercial, and public real 

estate. In order to achieve this, the government will spend nine billion euros on insulating buildings, 

installing heat pumps, and creating heat networks. The government will invest in increasing the 

sustainability of vulnerable neighbourhoods, installation of solar panels on rental dwellings, and 

renovation vouchers for homeowners. The government will furthermore increase the tax on natural 

gas while reducing the tax on electricity to increase the attractivity of renovating dwellings into gas-

free dwellings. The measures in the climate package are partly aimed at people that do not have the 

financial capability to increase the sustainability of their dwellings but do suffer from a poorly 

insulated dwelling and high energy bills (Kraan, 2023). In addition to the energy prices themselves, 

food price have also increased in recent years due to these increased energy price and inflation. 

Because of the increasing costs for food, energy and other housing costs, the costs of living for many 

Dutch households are becoming untenable, resulting in more households ending up in energy poverty 

(Nu.nl, 2022). Between 2020 and 2022, the amount of people experiencing energy poverty in the 

Netherlands increased to over 600,000 (Basekin, 2023). While prices continue to rise and the cost of 

living for Dutch citizens increases, many wonder how the national government of the Netherlands will 

support households and if the suggested measures will prevent the increasing energy poverty (Nu.nl, 

2022). 

Energy poverty has been recognised as a societal problem by the United Kingdom since the 1970 

(Delbeke, Verbeeck & Oosterlynck, 2013). However, until recently energy poverty research has been 

relatively limited within the European Union. For a long time, energy poverty as a problem and 

research into energy poverty gained little attention in the Netherlands. However, recently the national 

government of the Netherlands has increased its attention towards the problem of energy poverty. 

The COVID-19 pandemic has increased the awareness of reducing energy poverty and increasing the 

indoor climates of buildings. During this pandemic people spend more time at home than before, 

increasing their energy usage and therefore increasing their energy bills (Kruit, van Berkel & Dehens, 

2021). As people were forced to spend a higher portion of their budget on energy, concerns about the 

adverse effects of energy poverty increased (Churchill & Smyth, 2021). Sped up by these relatively 

recent developments, energy poverty has gradually emerged on the agendas of EU policy makers 

(Bouzarovski, Thomson & Cornelis, 2021). However, since energy poverty has only recently been 

included in policies by policy makers, energy poverty research in the Netherlands remains in its infancy 

(Mulder, Dalla Longa & Straver, 2023). The recent increase in the amount of research about energy 

poverty in the Netherlands is also visible when looking at figure 1. This figure shows the amount of 

energy poverty research that was studied for the literature review of this research. Researches about 

energy poverty in the Netherlands have only been published since 2020 while international and 

European researches on energy poverty were already published prior to 2020. 
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Figure 1. Publication dates of studied energy poverty literature 

1.2 Definition 
Currently, there is no common international definition for energy poverty. Households with energy 

poverty have difficulties with paying their energy bills and cannot invest in measures to reduce their 

energy usage. Energy poverty is connected to general poverty, however households that do not live 

in poverty may also experience energy poverty (Bonnard, Bruynoghe, Deprez & Kestemont, 2015). 

Huybrechs et al (2011) define energy poverty as a condition in which a household experiences 

difficulties with the supply of energy that is needed to satisfy their needs. The following definition of 

energy poverty will be used in this research: 

“A household experiencing energy poverty cannot meet their energy needs unless this is at the expense 

of other necessary common consumables” (Bonnard et al, 2015). 

This definition of energy poverty includes both regular energy poverty and hidden energy poverty. 

Regular energy poverty occurs when a household goes into debt because of using too much energy 

compared to their budget. Hidden energy poverty occurs when a household chooses not to meet their 

energy needs because they cannot afford this and do not want to get into debt (Delbeke et al, 2013). 

1.3 Motivation 
The aim of this research is to increase knowledge about energy poverty. Reducing energy poverty can 

lead to multiple socio-economic benefits and can speed up the energy transition (Mulder, Dalla Longa 

& Staver, 2021). Energy poverty is strongly connected to the energy transition where, according to the 

climate agreements, the aim is to stop using natural gas to heat buildings to reduce CO2 emissions 

before 2050. This transition potentially reduces energy poverty by reducing the energy usage. 

However, this transition may also increase energy poverty through increasing energy prices or through 

the high investment that have to be made to improve the energetic efficiency of buildings. Because of 

this, energy poverty also influences the energy transition since the energy transition can only be a 

success when all households are included. Energy poverty must be considered in order to realise a 

successful energy transition that is affordable for every household. Because of this, it is important to 

know which households experience energy poverty and need additional support (Kruit et al, 2021).  
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1.4 Problem analysis 
There are different measurement methods and indicators used in order to determine if a household 

has energy poverty. These indicators will be elaborated further during the literature review. Many of 

the existing indicators only use factors that are related to income and expenses. However, when 

predicting energy poverty housing and socio-demographic characteristics are often not included. 

Mulder et al (2021) develop an indicator that includes housing characteristics however the amount of 

housing characteristics that are included in this indicator are relatively limited. Other factors that are 

causally related to energy poverty according to the literature review are however not included in the 

existing indicators. Additionally, the various energy poverty indicators create significant differences in 

the measured number of households that experience energy poverty, even within researches. Next to 

this, many researches simply combine and add up the results of different energy poverty indicators, 

causing some households to be included twice or more in the total count of households experiencing 

energy poverty. The various characteristics of energy poverty currently create difficulties in order to 

estimate the energy poverty problem for all different sorts of households. The need to develop a new 

energy poverty indicator is present in existing literature. Bonnard et al (2015) suggest that a new 

method should be developed in order to improve the quantification of the scale of energy poverty. 

Based on the problems of the multiple existing indicators, this research aims to add to the existing 

knowledge by creating a new energy poverty index. Using this new indicator, the energy poverty 

problem in the Netherlands can be analysed and the risk of energy poverty for a household can be 

determined. Existing energy poverty indicators will be analysed and the size of the current energy 

poverty problem in the Netherlands will be analysed. It will be determined which factors have a 

significant relation with energy poverty, who the people experiencing energy poverty are, and where 

these people live. When the new indicator is constructed, this can be used to predict the number of 

households experiencing energy poverty for multiple future scenarios. Based on the results, it will be 

determined what policy should be implemented to reduce energy poverty. 

1.5 Research questions 
Based on the background and problem definition, the following main research question has been 

created:  

• Can a new model be created that predicts the risk of energy poverty? 

In order to successfully answer this research question, several sub-questions were created. These 

sub-questions are:  

o Which indicators are currently used in the literature to measure energy poverty? 

o Which factors are significantly related to energy poverty? 

o What are the characteristics of households with a high energy poverty risk? 

o What advise can be given to reduce the energy poverty risk based on the created model? 
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1.6 Relevance 

Academic 
Energy poverty has been studied internationally for over a decade and only recently in the Dutch 

context. Despite this, the prevalence of energy poverty and the recently increased attention to this 

problem ensure that energy poverty remains a relevant topic of academic research. From a technical 

and built environment background, research into energy poverty remains important to provide policy 

makers, engineers, and architects with as much relevant knowledge as possible. These professions 

determine how the society handles energy poverty and how accessible and inclusive the society is for 

people that experience energy poverty. Energy poverty remains a relevant theme for research about 

energy and the transition towards a more sustainable society. When more knowledge about energy 

poverty and the people that experience energy poverty is gained, policies about energy poverty can 

focus more on people and energy usage instead of only on buildings. It remains relevant to increase 

knowledge about the most recent developments of a societal problem through academic research 

since this new knowledge can provide an important contribution to the society. Academic relevance 

can build upon suggestions for further research that are given in the existing literature to continue the 

research about energy poverty and increase the knowledge of the problem. For example, Bonnard et 

al (2015) suggest that a new method should be developed to improve the quantification of the scale 

of energy poverty. 

Kruit et al (2021) suggest that more research is needed to identify the households that experience 

energy poverty. This can speed up the energy transition since when only the dwellings of the 

households experiencing energy poverty are improved, the largest effects can be achieved against the 

lowest costs. In order to do this in the most optimised way, it is vital to analyse this maximum potential 

and research which target groups will benefit most from this. These target groups can, for example, 

be categorised by housing type, energy label and income. Additional research can be performed about 

a financial support that is dependent on, for example, the housing type or income (Kruit et al, 2021). 

Indicators and data can form an effective tool for targeted measures and policies and can help to 

monitor the development of energy poverty and the effects of policies. This can be supported with 

location analyses with maps at the national, municipal and neighbourhood levels that can help to 

implement more targeted policies to reduce energy poverty (Mulder et al, 2021).  

Societal 
The societal relevance of this research is primarily aimed at housing corporations, municipalities and 

policymakers that require a knowledge of energy poverty to optimise policies and reduce energy 

poverty problems. Additional societal relevance is gained by testing and analysing the differences 

between existing indicators of energy poverty and by creating an indicator for energy poverty that 

includes more potential factors of energy poverty than the current indicators. The indicator that will 

be developed in this research can become a useful tool for housing corporations and municipalities by 

providing them with a more accurate representation of energy poverty. Additionally, these 

stakeholders will be able to use the model to predict what the effect of certain changes or policies on 

energy poverty will be. Based on this knowledge, housing corporations and municipalities can change 

their policies to optimally support people with an elevated risk of energy poverty. The model can 

furthermore create an insight for housing corporations and municipalities about which dwellings their 

portfolios should be renovated to reduce energy poverty. Policy makers can use the results of this 

research to develop optimised policies to reduce energy poverty. Finally, this research can provide an 

insight into which dwellings should be constructed to reduce the risk of experience energy poverty.   
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2. Literature review 
This chapter will describe the literature review that is performed in order to analyse how energy 

poverty is currently researched and measured. The literature review will additionally review factors 

with a potential effect on energy poverty, the consequences of energy poverty, energy poverty 

mitigation and the future of energy poverty. 

2.1 Energy poverty in existing research 
In his research about the energy poverty in Groningen, Baardink (2020) used the WoonOnderzoek 

Nederland (WoON) 2018 dataset to analyse the potential energy poverty of 414 households using 

multiple indicators. Baardink concluded that 12-19% (14,909-23,606) of the households in Groningen 

experience in energy poverty. Additionally, Baardink concluded that a strong increase in energy 

poverty will occur if the energetic performance of a large number of dwellings is not or not timely 

improved. Compared to the results of his results of 2020, Baardink predicts that by 2030 the number 

of households experiencing energy poverty in Groningen will have doubled. The research of Baardink 

was however limited by a relatively small dataset and aged data that did not include recent prices and 

new municipalities. Additionally, the 10% indicator showed a lower prediction of energy poverty cases 

than other indicators in the research of Baardink, while this indicator yielded the most cases of energy 

poverty in other researches (Kruit et al, 2021; Mulder et al, 2021). At the national level, between 

234,000 and 634,000 (3.3-8.8%) of the households in the Netherlands experience energy poverty 

according to Kruit et al (2021). In their research, Kruit et al (2021) used an indicator to include the 

hidden energy poverty that was relatively difficult to quantify and concluded that about 40,000 

households (0.6%) in the Netherlands experience hidden energy poverty. The determined number of 

550,000 (7%) households experiencing energy poverty in the Netherlands of Mulder et al (2021) is 

between the range described by Kruit et al (2021). However, Mulder et al (2021) found a larger 

number of households experiencing hidden energy poverty than Kruit et al (2021), namely 140,250 

(1.8%). Mulder et al (2021) add to their research by concluding that more than 10% of the households 

experience energy poverty in five municipalities and 7% of all neighbourhoods in the Netherlands. 

Internationally, multiple researches have been performed to analyse energy poverty, showing varying 

results and economic effects on energy poverty. Halkos & Gkampoura (2021) concluded that economic 

recessions have an impact on energy poverty, something that was also found by González-Equino 

(2015) who added that energy consumption decreases during economic recessions. Developing 

throughout the years, Halkos & Gkampoura (2021) found that energy poverty in Europe decreased 

between 2004 and 2008, increased between during 2008 and 2013 due to the energy crisis, and 

decreased again between 2013 and 2019. They also added that eastern and southern European 

countries have the most energy poverty while the Scandinavian countries have the least energy 

poverty. Coene & Meyer (2019) concluded that about 14% of all households in Belgium experienced 

energy poverty and Sokołowski, Lewandowski, Kiełczewska & Bouzarovski (2020) found that about 

9.8% of all households in Poland experienced energy poverty in 2017. In their research about energy 

poverty in Greece, Papada & Kaliampakos (2016) concluded that 58% of all Greek households and 

more than 90% of all Greek households in poverty experience energy poverty. They add that Greek 

households spend on average about 14% of their income on energy and that 75% of all Greek 

households have reduced other essentials in favour of energy needs. Churchill & Smyth (2021) 

concluded that over 40% of the households in Bulgaria are experiencing energy poverty. Additionally, 

they added that over 20% of the households in the US experience energy poverty while Bednar & 

Reames (2020) concluded this amount to be 35.5% of all households in the US. Energy poverty is 
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subject to seasonal differences and there is significantly more energy poverty compared to other 

seasons (Okushima, 2017). 

2.2 Energy poverty measurement 
Energy poverty in the context of developed countries differs from the energy poverty that is studied 

in developing countries. Where developed countries usually see energy poverty as the inability to pay 

for energy, developing countries see energy poverty as a lack of access to energy (Okushima, 2016; 

Bonatz, Guo, Wu & Liu, 2019). Because this research focuses on the Netherlands, energy poverty will 

be regarded from the developed countries perspective. It is difficult to construct a single indicator for 

energy poverty because of the different definitions in energy poverty between developing and 

developed countries and national and regional differences (Sokołowski et al, 2020). Because of this, a 

multidimensional index for energy poverty (MEPI) should be constructed that can be used as a single 

indicator for energy poverty in the Netherlands (Okushima, 2017). 

In their research about effect of economic crisis on energy poverty in Europe, Halkos & Gkampoura 

(2021) describe two approaches to define and measure energy poverty: consensual approaches and 

expenditure approaches. Consensual approaches use various subjective indicators to identify 

households that have difficulties meeting basic energy needs. These approaches use surveys in order 

to gain subjective information about energy affordability, thermal comfort, and dwelling efficiency. 

The information used as indicators in the surveys may include: the inability to keep the home 

adequately warm, arrears on utility bills, and the presence of leaks, damp, and rot in the dwelling. 

Expenditure approaches use indicators that are evaluated against a critical threshold. These indicators 

may include a high share of energy costs, a low available income, or insufficient spending on energy 

(Halkos & Gkampoura, 2021).  

Romero, Linares & López (2018) describe three expenditure approach indicators that are used to 

define and measure energy poverty: the energy quote (EQ), low income-high costs (LIHC), and 

minimum income standard (MIS). The most commonly used indicator for determining energy poverty 

is the EQ. According to the EQ, a household experiences energy poverty when: 

• 10% [𝑆𝑝𝑒𝑛𝑑𝑎𝑏𝑙𝑒 𝑖𝑛𝑐𝑜𝑚𝑒] <  [𝐸𝑛𝑒𝑟𝑔𝑦 𝑒𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒]     (1) 

The EQ is relatively simple to calculate, easy to communicate and relatively versatile from a pragmatic 

point of view. However, it is overly sensitive to energy prices, the 10% threshold is arbitrary selected, 

and the indicator has no reference to the household income (Romero et al, 2018). 

The LIHC indicator defines energy poverty when the income is below a poverty threshold and when 

the energy costs are higher than an energy expenditure threshold. This indicator corrects the EQ by 

considering not only the expenditure on energy but also an income threshold (Romero et al, 2018). 

An additional benefit of the LIHC indicator is that it can easily distinguish between energy poverty and 

general poverty (Rademaekers et al, 2016). However, the LIHC is a complex and non-transparent 

indicator. Additionally, it is difficult to isolate causes and effects when analysing series and to find out 

households that can come out of energy poverty by reducing their energy costs (Romero et al, 2018). 

According to the LIHC indicator defined by Romero et al (2018) a household experiences energy 

poverty when: 

• [ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝑒𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒 𝑜𝑛 𝑒𝑛𝑒𝑟𝑔𝑦]  >  [𝑚𝑒𝑑𝑖𝑎𝑛 𝑒𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒 𝑜𝑛 𝑒𝑛𝑒𝑟𝑔𝑦]  (2) 

And: 
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• [ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝑖𝑛𝑐𝑜𝑚𝑒] – [ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝑒𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒 𝑜𝑛 𝑒𝑛𝑒𝑟𝑔𝑦]  <

 60% [𝑚𝑒𝑑𝑖𝑎𝑛 ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝑖𝑛𝑐𝑜𝑚𝑒 –  𝑚𝑒𝑎𝑛 𝑒𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒 𝑜𝑛 𝑒𝑛𝑒𝑟𝑔𝑦]  (3) 

According to the MIS indicator a household is energy poor when they are not able to pay for their 

basic energy costs after covering housing and other needs. The MIS indicator is the most robust when 

measuring objective income-based energy poverty because it addresses the problem from its 

economic root. However, a con to this method is that it is difficult to determine the minimum income 

on an objective basis (Romero et al, 2018). Additionally, Rademaekers et al (2016) state that the MIS 

indicator predicts relatively low amounts of energy poverty for the lowest income groups and 

therefore question how accurate the MIS represents the reality. In order to determine if a household 

has energy poverty according to the MIS indicator, a MIS factor needs to be selected. This MIS factor 

represents all expenses on needs of a household,  except for council tax, rent, mortgage and fuel costs. 

Baardink (2020) uses the Minimumvoorbeeldbudgetten provided by the Budgethandboek of Nibud 

for the MIS factor. Kruit et al (2021) define the MIS as the payment risk however they use the 

Referentiebudgetten voor levensonderhoud defined by the Sociaal en Cultureel Planbureau as the 

MIS factor. According to the MIS indicator defined by Romero et al (2018) a household experiences 

energy poverty when: 

• [𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑠𝑡𝑠]  >  [𝑛𝑒𝑡 ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝑖𝑛𝑐𝑜𝑚𝑒] – [ℎ𝑜𝑢𝑠𝑖𝑛𝑔 𝑐𝑜𝑠𝑡𝑠] – [𝑀𝐼𝑆]   (4) 

An overview of the pros and cons of the energy poverty indicators is shown in table 1. Comparing all 

energy poverty indicators, Romero et al (2018) advise the usage of the MIS indicator for energy 

poverty. However, they add that an optimal MIS indicator should include the incomes and 

expenditures of households and all energy sources.  

Table 1: Pros and cons of expenditure approach indicators (Based on: Rademaekers et al, 2016; 

Romero, Linares & López, 2018) 

Energy quote (EQ) Low income, high costs (LIHC) Minimum income standard 
(MIS) 

+ Simple to calculate + Corrects the energy quote by 
considering not only the 
expenditure on energy but 
also an income threshold 

+ Robust when measuring 
objective income-based 
energy poverty by addressing 
the problem form its economic 
root 

+ Easy to communicate 

+ Relatively versatile from a 
pragmatic point of view 

+ Easily distinguishes between 
energy poverty and general 
poverty 

   

- Excessive sensitivity to 
energy prices 

- Overlay complex and not 
transparent indicator 

- Predicts relatively low 
amounts of energy poverty for 
the lowest income groups - Arbitrary selection of the 

threshold at 10% 
- Difficult to find out those 
households that can come out 
of energy poverty by reducing 
their energy costs 

- Lack of any reference to 
household income 

- Difficult to isolate causes and 
effects when analysing the 
series 

- Difficult to determine the 
minimum income on an 
objective basis 
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Adding to the energy poverty indicators described by Romero et al (2018), Baardink (2020) adds the 

housing costs overburden rate (HCOR) that includes the net living costs, energy costs and the 

spendable income. According to this indicator, someone experiences energy poverty when: 

• [𝑛𝑒𝑡 𝑙𝑖𝑣𝑖𝑛𝑔 𝑐𝑜𝑠𝑡𝑠] – [𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑠𝑡𝑠] >  40% [𝑠𝑝𝑒𝑛𝑑𝑎𝑏𝑙𝑒 𝑖𝑛𝑐𝑜𝑚𝑒]   (5) 

Mulder et al (2021) describe an energy poverty indicator that includes the energy performance of a 

dwelling. This indicator is called the low income and low energy quality (LILEQ) indicator. According to 

this indicator a household experiences energy poverty when they have a relatively low income and 

live in a house with a relatively low energy quality. The low income is defined as having an income that 

is lower than 130% of the legal social minimum and having a financial capital that is part of the lowest 

10% of the Netherlands. Mulder et al (2021) use two measures to define a dwelling with a low energy 

quality. The first is if a dwelling has an energy label D or lower. The second, more accurate, definition 

defines a dwelling with a low energy quality when the median energy usage of the dwelling class is 

higher than the median energy usage of all dwellings in the Netherlands. The different dwelling classes 

that were included in their research were determined based on the dwelling characteristics: 

construction year, dwelling type, and dwelling size. According to the analysis of Mulder et al (2021), 

about 50% of all dwellings with an energy label C and all dwellings with a lower energy label were 

defined as having a low energy quality according to their more accurate definition.  

Next to the general LILEQ indicator, Mulder et al (2021) add the LILEQ- and LILEQ+ indicators. LILEQ- 

is a variant of LILEQ aimed to measure hidden energy poverty and the households that under consume 

energy because of financial difficulties. LILEQ- adds an underconsumption of energy factor to LILEQ 

and this factor includes if the energy costs of a household are part of the lowest 25% in their dwelling 

class. LILEQ+ is another variant of LILEQ, aimed to include households with a strikingly high energy 

consumption. LILEQ+ adds an energy overconsumption factor to LILEQ in order to include if the energy 

costs are part of the highest 75% of the corresponding dwelling class.  

Both LILEQ and its variants add to the other measurements of energy poverty by including some 

dwelling characteristics instead of primarily looking at household incomes and expenditures. 

However, because of this, LILEQ and its variants are insensitive to the effect of energy factors on 

energy poverty, such as the energy prices and the energy consumption of households (Mulder et al, 

2021). Another disadvantage of the LILEQ indicator is that measuring and comparing the energetic 

quality of a dwelling is not a simple task in practice. Reliable energy label data is often absent and 

hence the dwelling energy quality in the LILEQ measurement is operationalised in an indirect way 

(Mulder et al, 2023).  

Selecting the most optimal energy poverty indicators is important to measure all elements of energy 

poverty. The measurements should be able to include households with an excessive energy burden or 

energy expenditure, households with a residual income below a monetary poverty line after their 

energy expenses have been deducted, and households with a low actual energy consumption that can 

be seen as hidden energy poverty (Herrero, 2017). Kruit et al (2021) include hidden energy poverty in 

their measurement by analysing the households that have energy poverty according to the 10% and 

MIS indicator for standard energy consumption but that do not have this when looking at the 

measured energy usage. Figure 2 shows the average energy poverty percentages in the European 

Union that were found using the different energy poverty indicators that were analysed. This figure 

shows that the amount of energy poverty varies greatly between different energy poverty indicators.  
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Figure 2. Average energy poverty of analysed indicators (Based on: Baardink, 2020; Coene & Meyer, 

2019; Kruit et al, 2021; Mulder et al, 2021; Romero et al, 2018; Sokołowski et al, 2020) 

2.3 Energy poverty factors 

Energy 
Multiple existing researches stress the importance of relation between energy prices and energy 

poverty. All these researches agree that when energy prices increase, so do the number of households 

experiencing energy poverty when no measures to improve energy performance are implemented. In 

their research about energy poverty in Europe, Halkos & Gkampoura (2021) identify energy prices as 

the main cause of energy poverty and Mulder et al (2023) add that a minor increase of the gas price 

may lead to a significant increase in energy poverty. While both the prices for electricity and gas have 

increased in the past years, there is a trend in developed countries where the electricity usage 

increases while the gas usage decreases (Coene & Meyer, 2019). The energy price is especially 

important when using the EQ, since this indicator is extremely sensitive to energy price changes 

(Romero et al, 2018). 

Dwelling  
A second factor determining energy poverty that most energy poverty researchers agree on is a poor 

energy performance of dwellings. Both Baarding (2020) and De La Paz et al (2022) conclude that 

energy poverty is characterised by dwellings with a poor energy performance. When a building has 

poor insulation and an aged heating system more energy is required to create a comfortable indoor 

climate. The energy label is often used as a simple indicator of the energy performance of a building 

and according to Kruit et al (2021) there is an increased risk of energy poverty when a building has an 

energy label C or worse.  

Bonnard et al (2015) and Coene & Meyer (2019) concluded that rent prices have an effect on energy 

poverty. Especially households that live in a relatively cheap rental dwelling are confronted with a 

substantial increase in the rental prices, reducing their spendable income after deduction of housing 

costs (Coene & Meyer, 2019).  
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Regarding dwelling type and energy poverty, most researches agree that households living in detached 

houses have a larger risk of experiencing energy poverty, followed by semi-detached houses. This 

increased risk of experiencing energy poverty for household living in detached houses is caused by the 

fact that detached households often have a lower energy quality. Additionally, detached houses 

require more energy to heat the dwelling to a comfortable temperature compared to other housing 

types. Households living in apartments have a lower risk of experiencing energy poverty. (Delbeke et 

al, 2013; Papada & Kaliampakos, 2016; Romero et al, 2018; Sokołowski et al, 2020). Although Maxim 

et al (2016) could not determine a significant relation between energy poverty and the dwelling type 

they argue that the differences in the energy poverty between different housing types are related to 

the dwelling exposure to the environment. Detached and semi-detached houses require additional 

energy for heating and cooling and have therefore a higher risk for energy poverty compared to 

dwellings with a higher thermal efficiency. Papa & Kaliampakos (2016) did find a significant relation 

between energy poverty and the dwelling type. In their research, they discovered that energy poverty 

occurred twice as often in detached houses compared to apartments.  

Delbeke et al (2013), Okushima (2017), Kruit et al (2021), and De La Paz et al (2022) agree that a larger 

dwelling size increases the risk of energy poverty since the size of the dwelling determines its energy 

performance through increasing energy usage with dwelling size. 

Another factor related to the energy performance of dwellings is the age of the dwelling. Households 

living in older dwellings experience more energy poverty than households living in newer dwellings. 

Older dwellings are in general less insulated and therefore require more energy to create a 

comfortable indoor climate, increasing the energy bill for households living in these older dwellings 

(Kruit et al, 2021). Papada & Kaliampakos (2016) elaborate that the energy performance of 71% of the 

Greek residences built before 1979 have not been improved throughout the years. Sokołowski et al 

(2020) concluded that the risk of energy poverty increases with building age and the effect of building 

age on energy poverty was largest for buildings constructed before 1946. Adding to this, Kruit et al 

(2021) concluded that the number of households experiencing energy poverty living in dwellings 

constructed after 1992 is relatively minor compared to the older dwellings. Furthermore, they 

concluded that households living in dwellings constructed before 1964 experience the most hidden 

energy poverty while hidden energy poverty does not exist for households living in dwellings 

constructed after 2006. 

The location of the dwelling has an influence on the risk of energy poverty. Most researchers conclude 

that people living in areas with a low degree of urbanisation experience more energy poverty than 

people living in cities (De La Paz et al, 2022). This difference is caused by both lower average incomes 

in rural areas and because of the urban heat island effect, reducing the amount of energy needed to 

heat a dwelling to a comfortable temperature in urban areas (Sokołowski et al, 2020; Halkos & 

Gkampoura, 2021). Bouzarkovski et al (2021) reach the same conclusion, except for Spain where 

energy poverty is less common in the rural areas. Focusing on the Dutch context, Kruit et al (2021) 

concluded that households in Groningen and Friesland experience the most energy poverty. Mulder 

et al (2021) concluded that energy poverty primarily occurs for households living in peripheral regions 

of the Netherlands and some densely populated urban districts outside of the Randstad. Mulder et al 

(2023) add that while poverty is generally found in urban areas, energy poverty is primarily located in 

the rural areas. According to their research it is not clear if there is a link between location and income. 

Additionally, they question whether the energy poverty differences between urban and rural areas 

are caused by a higher number of recent urban renovation projects resulting in dwellings with better 

energy qualities compared to dwellings in rural areas. Although they find differences in energy poverty 

figures between urban and rural areas, they conclude that these differences are not significant. 
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Socio-demographics 
The income is another factor that is considered to be relevant in the occurrence of energy poverty by 

all existing literature about energy poverty. Baardink (2020) and De La Paz et al (2022) found that the 

chance of experiencing energy poverty increases with the decrease of income and Pachauri & Spreng 

(2011) also found a significant relation between monetarily poverty and energy poverty. Okushima 

(2017) add to these findings, stating that energy poverty is especially present among the lowest 30% 

of incomes. The relation between income and energy proves to be a source of social injustice. The 

share of a household income that is spend on energy is higher for the lower incomes while this group 

often uses less energy than households with higher incomes. Because of this, the amount of energy 

poverty indicated by the 10% energy quote indicator may be different for people, depending on if they 

have a high, average, or low income. Additionally, someone can experience energy poverty while not 

living in monetarily poverty (Bonnard et al, 2015). Energy poverty is an issue that is primarily targeted 

at low-come households that often have difficulties to eliminate the causes of energy poverty (Li et al, 

2021). Because of this, most existing researches agree that unemployment is a significant predictor of 

energy poverty (Baardink, 2020). 

Another factor that can be used to analyse energy poverty is the payment risk, occurring when a 

household has insufficient funds for life costs after paying for the energy bills and housing costs (Kruit 

et al, 2021). According to Kruit et al (2021) about 5.5% of the Dutch households have a payment risk 

and Kruit et al (2021) define energy poverty as an affordability problem through a combination of a 

high energy quote and payment risk.  

The risk of experiencing energy poverty differs between different household types. According to 

Delbeke et al (2013) especially single-person, single-parent, and large households experience energy 

poverty. Except for the large households, most other researchers agree with the finding that single-

person and single-parent households experience more energy poverty (Okushima, 2017; Baarding, 

2020; Kruit et al, 2021; Rao, Tang, Chau, Iqbal & Abbas, 2022). According to Coene & Meyer (2019) 

more than a third of all single-parent households experience energy poverty while this group is only 

7.2% of all households. More than half of all households that experience energy poverty are single-

person households while this group is only a third of all households. The increased risk of experiencing 

energy poverty for single-parent households is related to an average lower income and increased 

poverty risk for these types of households. Coene & Meyer (2019) expect that with the current 

demographic developments, energy poverty will increase further, especially for single-parents.  

Multiple conclusions about the effect of age on energy poverty are found in during the literature 

review. According to Romero et al (2018) members of a household aged under fourteen increase the 

chance of energy poverty while members of a household aged 65 or over reduce the probability of 

being energy poor. Romero et al (2018) add that the elderly do not seem to be a vulnerable group, a 

finding that is supported by Halkos & Gkampoura (2021) who conclude that elderly seem to be 

affected less by energy poverty. These findings are contrary to other researches that concluded that 

elderly have a higher probability of experiencing energy poverty (Okushima, 2017; Coene, & Meyer, 

2019; Churchill & Smyth, 2021; Rao et al, 2022). Delbeke et al (2013) support these findings by 

explaining that elderly spend more time at home and prefer a higher indoor temperature which causes 

them to use more energy. According to De La Paz et al (2022), both old and young household members 

increase the chance to experience energy poverty. 
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The education level is another factor that has a relation with energy poverty, where a someone is 

more likely to be energy poor when they have a low level of education (Delbeke et al, 2013; Romero 

et al, 2018; Lamain, Elbert & Ottema, 2021). People with a low educational level have higher risks of 

becoming unemployed and apply less energy saving measures because they are less aware of these 

measures (Delbeke et al, 2013; Lamain et al, 2021).  

The tenure status a considerable influence on the probability for a household to experience energy 

poverty. Households living in owned properties are less likely to experience energy poverty compared 

to households living in rented dwellings. Living in a rented dwelling doubles the probability of being 

energy poor compared to living in an owned dwelling according to Romero et al (2018). However, 

according to Bonnard et al (2015), households renting a dwelling experience four times as much 

energy poverty as households living in an owned dwelling. Baardink (2020) concluded that energy 

poverty in Groningen primarily occurs in the social and private rental sectors. However, multiple 

studies have contradicting conclusions to whether energy poverty is more prevailing in the social or 

private rental sector. According to Huybrechs et al (2011) energy poverty occurs most in the private 

rental sector, followed by the social rental sector. Coene & Meyer (2019) concluded that tenants in 

the private sector represented a third to half of all households experiencing energy poverty, while this 

group is only 22% of the entire population. Kruit et al (2021) and Mulder et al (2021) concluded that 

most households experiencing energy poverty live in a social rental dwelling. According to Mulder et 

al (2021) even 75% of all households experiencing energy poverty live in a dwelling owned by a social 

housing corporation. Households living in rented dwellings often have low incomes and therefore 

these households cannot invest in improving the energy-efficiency of their dwelling when the owner 

of the dwelling is not willing to invest in improving the energetic performance of the building (Bonnard 

et al, 2015). Next to this, tenants often have little to no interest to improve the energetic performance 

of their dwelling because they are not the owners of the dwelling. Adding to this, existing measures 

to improve the energy performance of dwellings are currently mainly aimed at owners and therefore 

owner-occupied dwellings are more often improved energetically compared to rental dwellings 

(Delbeke et al, 2013). An overview of the identified characteristics and their expected effect on energy 

poverty are shown in appendix 1. 

2.4 Energy poverty consequences 
Energy poverty has multiple consequences such as: impacts on health, the economy, and the 

environment (González-Eguino, 2015). Thomson, Snell & Bouzarovski (2017) concluded that there is a 

significant difference in health between the energy poor and the non-energy poor. Energy poverty 

coupled with the poor energetic performance of a dwelling can form a threat to the health of residents 

(Goedemé et al, 2017). Energy poverty can cause moist and mould problems to develop within 

dwellings, resulting in indoor pollution (Delbeke et al, 2013). This indoor pollution can lead to 

respiratory and cardiovascular diseases, lung cancer and pneumonia (González-Eguino, 2015). Energy 

poverty can deteriorate the mental wellbeing of people and can be a large cause for stress and 

depression (Bouzarovski et al, 2021; Kruit et al, 2021). Additionally, energy poverty can limit the 

activities that a person can perform, resulting in social isolation and exclusion (Huybrechs et al, 2011; 

Coene & Meyer, 2019; Baardink, 2020). Countries with relatively high amounts of energy poverty also 

reported increased mortality rates and access to energy can decrease mortality rates and increase life 

expectancy (Churchill & Smyth, 2011; Pan, Biru & Lettu, 2021). Pan et al (2021) concluded that 

countries with a higher standard of living could mitigate the negative effect of energy poverty on 

health.   
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Energy poverty impacts the economy of a country by reducing the gross domestic product and can 

decrease the social welfare of a country dramatically if the energy poverty is long-term consistent and 

not mitigated (Li et al, 2021). The environment is impacted by energy poverty through climate change, 

where energy poverty can lead to deforestation, land-use changes, and increased greenhouse gas 

emissions (Sovacool, 2012).  

2.5 Energy poverty mitigation 
There are multiple barriers to successfully mitigate or eliminate energy poverty, these include 

technical, financial, political, and social (Sovacool, 2012). In order to overcome these barriers energy 

poverty needs to be incorporated into the design of policies (González-Equino, 2015). Since inefficient 

policies can increase energy poverty (Li et al, 2021), the design of policies to reduce energy poverty 

requires detailed information about which subgroups of the population are most affected by energy 

poverty and the determinants of energy poverty (Pachauri & Spreng, 2011). In general, three tracks 

are used to mitigate energy poverty: increasing the awareness about energy poverty to reduce energy 

usage, financial measures to alleviate energy burdens, and sustainability measures to improve the 

energy-efficiency of dwellings (Kruit et al, 2021). Measures aimed at increasing the awareness about 

energy poverty are designed to tutor people about saving energy and energy policies (Churchill & 

Smyth, 2021). However, these measures should always be combined with other measures since 

awareness measures alone yield too little to create a structural energy transition (Kruit et al, 2021).  

Financial measures to alleviate energy burdens such as social tariffs and income supports are 

specifically aimed at improving the affordability of energy for low-income and vulnerable households 

(Okushima, 2017). However, social tariffs are only effective when the vulnerable households in the 

target group are the actual recipients (Romero et al, 2018). In a financial program in Greece, residents 

could be supplied with a subsidy based on financial criteria. However, this financial program was not 

successful since the low-income and vulnerable households were not the recipients of these subsidies 

and they were often the first ones that were excluded from the subsidies (Papada & Kaliampakos 

2016). Additionally, financial supports are only effective to temporarily lift the energy burden of low-

income households and they do not reduce the high initial energy burdens and support the energy 

transition (Kruit, 2021). Opinions about financial incentives to mitigate energy poverty differ between 

people that approach energy poverty from an ecological view and those that approach energy poverty 

from a social view. People with an ecological view on energy poverty strive to make households reduce 

their energy usage while people with a social view strive to provide households experiencing energy 

poverty with more energy. Because of this, solely financial initiatives such as a reduction of taxes on 

energy are not effective from an ecological view since this will result in increased energy consumption 

and negative effects on the environment (Delbeke et al, 2013). Additionally, reducing the energy costs 

for households removes the incentive to invest into improving the energy-efficiency of dwellings and 

does therefore also not contribute to other environmental goals such as the reduction of CO2 

emissions (Ürge-Vorsatz & Tirado Herrero, 2012; Goedemé et al, 2017). 

The final common track to mitigate energy poverty is to apply sustainability measures to improve the 

energy-efficiency of dwellings to reduce energy bills (Kruit et al, 2021). Improving the energy-efficiency 

of buildings has the potential to contribute to both the elimination of energy poverty and reduction 

of CO2 emissions in the long term (Ürge-Vorsatz & Tirado Herrero, 2012). Additionally, stimulating 

improvements to the energy-efficiency of dwellings can be done through measures that are 

satisfactory from both an ecological and a social view (Delbeke et al, 2013). Improving the energetic 

performance of a dwelling can be done according to the three consecutive steps described by the Trias 

Energetica of Lysen (1996). The first step is a reduction in the need for energy through insulation and 
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airtightness of the dwelling. Because of this step, residents of dwelling will need less energy to create 

a comfortable indoor climate. The second step is to supply the household energy needs as much as 

possible by sustainable energy generated by the dwelling through solar panels, solar collectors, and 

heat pumps or by solely purchasing sustainable energy. The third step is to use technical installations 

that are as efficient as possible to minimise heat and energy losses. The improvements of the Trias 

Energetica reduce the energy requirements of households, making them less sensitive to increasing 

energy prices and reducing their risks of experiencing energy poverty (Lysen, 1996). 

More municipalities in the Netherlands aim to improve the sustainability of their housing stock. 

However, improving the energetic performance of dwellings is not always affordable for everyone. 

The benefits of improving the energetic performance of a dwelling are primarily long-term benefits 

while poorer households are often only interested into short-term benefits. Because of this, energetic 

improvements of dwellings of poorer households are often not performed (Baardink, 2020). The 

energy transition offers different opportunities for dwelling owners than for dwelling tenants. Tenants 

cannot improve the energetic performance of their dwelling themselves and are dependent on the 

willingness of the housing corporation to improve the energetic performance of the dwelling (Mulder 

et al, 2021). Housing corporations are often not interested in improving the performance of dwelling 

because the costs for improving the energetic performance of a building are generally not paid back 

through energy savings (Kruit et al, 2021). Additionally, so-called split incentives occur when a 

property owner invests in improving the energy efficiency of their building but cannot experience the 

direct benefits from these investments that are often only benefits for tenants such as reduced energy 

needs. Because of this, investing in sustainability improvements become less interesting for the 

property owner, unless the rent price can be increased. However, if the rent price is increased, this 

can be detrimental to the often financially vulnerable tenants that may still experience energy poverty. 

Social housing corporations have to pay for sustainability investments to their housing stock while the 

benefits of these investments regarding energy savings are mainly for tenants. However, because 

social rents are capped by law, the cost of the energy improvements cannot simply be passed on to 

the tenant, even if their energy costs are reduced (Goedemé et al, 2017). 

Delbeke et al (2013) advise improve the energetic performance of dwellings on the private rental 

market. Households with limited financial resources should be provided with an opportunity to invest 

in sustainability and be able to perform energy-saving improvements. Additionally, the information 

about energy poverty and solutions should remain accessible and simple so everyone can understand 

the problem and what can be done to mitigate it (Delbeke et al, 2013). Serial renovations should be 

executed to make sure that many social housing dwellings can be renovated in a brief period, with 

minimal impacts to their tenants. This is however only possible when the dwellings in the series are 

relatively similar (Goedemé et al, 2017). National governments can stimulate the affordability of 

sustainability measures through sustainability subsidies and the payback period of sustainability 

investments is currently relatively favourable (Baardink, 2020). Policies that stimulate the 

improvement of the energetic performance of dwellings can reduce energy poverty and support the 

energy transition. Investment costs for improving the energetic performance of dwellings are 

relatively high however these investments create a structural long-term positive effect. The effect of 

improving the energy performance of dwellings on energy poverty is however relatively slow. Because 

of this, the largest effects to reduce energy poverty can be achieved when the dwellings of households 

experiencing energy poverty are given priority in renovations since these dwellings will offer the 

largest potential savings (Kruit et al, 2021). 
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Kyprianou et al (2019) also advise to target the most effective and vulnerable target group with 

policies and financial aids. The government can play a vital role in order to reduce energy poverty by 

investing in the housing sector and stimulating the renovations of dwellings to improve their energy 

performance (Bonnard et al, 2015). Government policies should reduce the effects of energy poverty 

and increase the motivation of residents to invest into energy poverty mitigation (Li et al, 2021). 

Policies should focus on energy saving and improving the energy performance of the building stock. 

Additionally, these policies should be targeted at the population experiencing energy poverty and not 

only the low-income population. Finally, a more decentralised approach can be beneficiary to the 

mitigation of energy poverty since regional policies to reduce energy poverty are more effective than 

those at the national level (Kyprianou et al, 2019; Bouzarovski et al, 2021). 

2.6 Energy poverty future 
Because of the unpredictable nature of energy poverty and some of its factors, it is difficult to predict 

how energy poverty will develop in the next decade. Much will depend on how the energy prices will 

develop and the speed in which the energy-efficiency of dwellings is improved (Huybrechs et al, 2011; 

Delbeke et al, 2013). According to Mulder et al (2021) many people that indicated to currently have 

no problem to afford their energy bills will experience energy poverty when the gas price increases 

further in the future. If the energy performance of the housing stock is not improved, the combination 

of the current energy transition policy and energy prices prognoses will cause an increase in the 

number of households that experience energy poverty of more than 30% by 2030. In order to avoid 

this increase, measures and investments will be needed that are targeting households with an 

elevated risk of experiencing energy poverty. These measures and investments should provide 

financial support and reduce the energy needs of the households (Kruit et al, 2021). 
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3. Research design 
Multiple analyses will have to be performed in order to achieve the set research goals and answer the 

research questions. This chapter will explain the created conceptual model, the scope of the research, 

and the methods and programs that were used to analyse the data. 

3.1 Conceptual model 
Figure 3 shows the conceptual model that was created with the aim to predict energy poverty through 

multiple dwelling, socio-demographic and economic factors. The conceptual model is aimed at 

determining the indirect effects of variables on energy poverty and the effect of variables on energy 

poverty that had not been included in existing energy poverty research.  

 
Figure 3. Conceptual model 

Based on the literature review, it is expected that the household type, dwelling size, dwelling 

construction year, dwelling type and the presence of solar panels will not have a direct effect on 

energy poverty. It is however expected that these variables will have an indirect effect on energy 

poverty through energy usage and energy expenditure. It is expected that multiple variables will have 

an indirect on energy poverty through income. Based on the literature review, it is expected that the 

education level, income, urbanity, age, other housing costs, and the energy costs will have a direct 

effect on energy poverty. The expected relations between the variables and energy poverty are shown 

in appendix 1. The relation between age and energy poverty included in the conceptual model remains 

a research gap caused by the many contradictory findings about this relation in the literature review. 

The created conceptual model includes factors of energy poverty that are included in existing energy 

poverty indicators and additional factors that were identified to be related to energy poverty in the 

literature review and that have not yet been included in existing energy poverty indicators. These new 

factors are, for example, personal characterisitcs such as the household type, education level, and 

age. Other factors that have not yet been included in existing energy poverty indicators are dwelling 

characterisitcs such as the dwelling type, size, construction year, and presence of solar panels. Finally, 

the effect of the urbanity of a neighbourhood on energy poverty has not yet been included in existing 

energy povety indicators.  
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3.2 Scope 
The scope of this research will not include the negative effects of energy poverty on health since this 

topic itself is relatively broad and has already been the topic of many existing researches. The research 

is focused on households living in social housing since this group is the most affected by energy 

poverty according to the literature review. Dwellings connected to heat networks will be filtered from 

the dataset since these dwellings are not comparable to other dwellings regarding energy usage and 

expenditure and will therefore cause skewed results. Energy prices will not be included in this research 

since these may vary greatly depending on time and are very dependent on the energy contracts that 

respondents have. Additionally, this research will not include hidden energy poverty. While hidden 

energy poverty is similar in name to energy poverty, it is determined in a completely different way 

and should therefore be analysed in another research. Finally, since this research focusses on energy 

poverty and energy usage in dwellings, transport poverty and its effects on energy poverty will not be 

included. 

3.3 Methods 

Descriptive/bivariate analyses 
The first analysis that will be performed after the required data is prepared is a descriptive analysis. 

The descriptive analysis will show the frequencies of the value categories of each of the selected 

variables. Additionally, the descriptive analysis will show how the respondent cases are distributed for 

all original and recoded variables. The second analysis that will be performed is a bivariate analysis of 

the selected and recoded variables. The bivariate analysis will test how well the demographic and 

socio-economic variables in the data sample represent the larger population. Additionally, other 

bivariate analyses will test the relations between exogenous variables in the created conceptual 

model. Both the descriptive and bivariate analyses will be performed and analysed using the Statistical 

Package for the Social Sciences (SPSS). SPSS is a statistical software platform that was introduced in 

1968. SPSS can perform statistical analyses and create visualisations with the aim to extract insights 

from big data.  

Exploratory factor analysis (EFA) 
Energy poverty is regarded as a latent variable in this research since the occurrence of energy poverty 

cannot be observed and has to be interpreted according to indicators. Latent variable modeling 

techniques are required to analyse models that include latent variables. Factor analysis (FA) will be 

used to analyse the relations between existing energy poverty indicators and the latent concept of 

energy poverty. FA was introduced in 1904 and allows for the reduction of multiple variables into a 

smaller set by establishing the underlying dimensions between the observed variables and a latent 

construct. Exploratory factor analysis (EFA) is a version of FA that is used when a researcher has no 

expectations or prior theory about the relations between observed variables included in the factors 

(Taherdoost, Sahibuddin & Jalaliyoon, 2022). EFA can be used to determine if the observed variables 

measure the same concept. The basic hypothesis of a EFA is that there is an underlying latent concept 

that relates multiple observed variables in the dataset. The goal of the EFA is to find the smallest 

number of factors that will account for the correlations with the latent factor (Young & Pearce, 2013). 

If the observed variables are unrelated, an EFA will not find a common underlying concept. Figure 4 

shows an overview of all steps that will be taken during the EFA. 
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Figure 4. Overview of EFA steps (Based on: Kootstra: 2004) 

When conducting an EFA, the first step is to create a list of observed variables that will be included in 

the EFA model (Latif, n.d.). All observed variables should be measured on a continuous scale and the 

sample size should be sufficient. There is no general consensus about a sufficient sample size for EFA 

and suggestions for the number of respondents vary between at least 10-15, at least 50, at least five 

times as much as the included variables (Kootstra, 2004); at least 300 (Young & Pearce, 2018); at least 

150 and 10 per variable (Hooper, 2012).  

The second step of conducting the EFA is to determine if the variables in the model are reliable 

measurements. The Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy can be tested and if 

the value of the KMO is greater than 0.5, the data sample is adequate for an EFA (Kootstra, 2004). The 

correlation matrix has to be analysed in order to analyse the correlation among the observed 

variables. In order to successfully conduct the EFA, no or limited correlation between the observed 

variables should be avoided (Latif, n.d.). To be appropriate for EFA the observed variables have to be 

correlated however they should not have too high correlations, as this can lead to multicollinearity 

and singularity. Bartlett’s test of sphericity can be used to check the correlations between observed 

variables used in the EFA. The EFA can be successfully conducted if Bartlett’s test of sphericity is 

significant. Multicollinearity can be checked by analysing the determinant of the correlation matrix. If 

the determinant is greater than 0.00001, it can be concluded that there is no multicollinearity 

(Kootstra, 2004). 

In the third step of the EFA the FA is conducted and in the fourth step the communalities are 

estimated. If the goal of the FA is to summarize the data of multiple observed variables into a latent 

variable, the principal axis factoring technique is selected. The communalities describe the amount of 

variance that a variable shares with the other variables taken into account in the EFA (Latif, n.d.). In 

FA it is assumed that the variables do not account for 100% of the variance (Kootstra, 2004). When a 

variable included in the EFA has a relatively small communality value, the variable does not contribute 

much to the measurement of the underlying factor and should therefore be removed from the FA 

(Latif, n.d.).  

In the fifth step of the EFA, the researcher has to determine the number of factors that have to be 

retained. Most commonly, this is done according to the Kaiser-Guttman rule which suggests that only 

factors with an eigenvalue larger than 1 should be retained (Kootstra, 2004). The eigenvalue 

Observed variables
Reliable 

measurements
Factor analysis

Communalities
Number of 

factors to be 
retained

Factor loadings
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represents the amount of the common variance of the observed variables that a factor explains. 

Factors with an eigenvalue larger than 1 explain more variance than a single observed variable while 

factors with eigenvalues less than 1 explain less variance than a single observed variable. Factor with 

an eigenvalue less than 1 are therefore not retained in the analysis (Qualtrics, n.d.). Other methods 

that are used to determine the number of factors that should be retained in the EFA are keeping the 

factors which account for about 70-80% of the variance or keeping all factors before the breaking 

point of a scree-plot (Kootstra, 2004). A scree plot is a graph that visualises the eigenvalues and factor 

numbers according to the order of extraction (Latif, n.d.) Since the goal of this research is to determine 

if the factors have one common underlying factor, only one factor will be retained.  

The final step of the EFA concerns the interpretation of the results. The EFA will determine factor 

loadings, also known as factor scores, which describe how strongly one of the observed variables is 

related to a given factor (Kootstra, 2004). The factor loadings are included in the classical factor 

analysis model as described by Yong & Pearce (2013): 

• 𝑋𝑗 = 𝑎𝑗1𝐹1 + 𝑎𝑗2𝐹2 + ⋯ +𝑎𝑗𝑚𝐹𝑚 + 𝑒𝑗       (6) 

In this model, m represents the number of observed variables (F1, F2,…,Fm), Xj represents the latent 

factor and the factor loadings are represented as: aj1, aj2,…, ajm. The model assumes that there is an 

underlying factor consisting of a linear function of observed variables and a residual variate. Using this 

model, it can be determined how much of each observed variable contributed to the latent factor 

since a larger factor loadings means that the observed variable contributes more. Since factor loadings 

represent the strength of the correlation between an observed variable and the factor, they are similar 

to regression coefficients in multiple regression analysis (Yong & Pearce, 2013). In fact, factor loadings 

can be interpreted like standardised regression coefficients. In an EFA, factor loadings larger than 0.65 

are considered to be strong associations (The Analysis Factor, n.d.). In this research all steps of the 

EFA will be conducted using SPSS.  

Structural equation modeling (SEM) 
A structural equation model (SEM) will be developed in order to predict energy poverty. SEM is a 

framework that integrates measurement theory, latent variable factor analysis, path analysis, 

regression, and simultaneous equations. By including both direct and indirect effects of variables on 

other variables in the model, SEM enables the analysis of a system of relationships rather than the 

effects of predictors on a single dependent variable. By looking at the relationships between variables, 

SEM enables the application of path analysis with latent concepts that are not directly observable such 

as energy poverty (Sturgis, 2016). 

Multiple indicators with a high correlation with the latent factor (factor loadings) are needed to 

successfully identify components of the SEM. Additionally, a SEM must be over-identified, the SEM 

must include more observed than latent variables, and there must be enough information in the data 

to estimate the SEM model coefficients. SEM includes both exogeneous and endogenous variables 

and within a SEM a variable can be both a predictor and an outcome (Sturgis, 2016). 

SEM is a popular technique used to model complex and multivariate systems. In a SEM, latent variables 

are constructed through a confirmatory factor analysis (CFA) (Jaya, Hermina & Sunengsih, 2019). CFA 

differs from EFA since the measurement model of the CFA is specified before identifying the data. CFA 

is used when researchers want to confirm existing hypotheses or theories rather than explore data 

(Frost, n.d.). Because of this, it should be predetermined which indicators measure which factors and 

which indicators are unrelated to which factors. Since latent variables have no measurements, a SEM 

allows a researcher to constrain one factor loading to the value of 1. By doing so, the connected 
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variable will become a reference item and the latent variable will have the same scale as this reference 

item, resulting in a fully standardised solution (Sturgis, 2016). In a SEM, path analysis is used to 

construct the relationships between the latent and observed variables. 

There are two common approaches of SEM: variance based-SEM (VB-SEM) and covariance based-SEM 

(CB-SEM). CB-SEM can evaluate complex SEM models though a parametric approach however strong 

assumptions must be satisfied to have a good result. Examples of these assumptions are that a large 

sample size is needed, and that the data must be normally distributed. CB-SEM is very sensitive to 

non-normality and a high variability in the data will violate the assumptions of CB-SEM. VB-SEM can 

be used when the assumptions of CB-SEM are violated. VB-SEM, also called partial least square SEM 

(PLS-SEM) is more flexible regarding the normality of the distribution of the data and sample size 

requirements. Additionally, where CB-SEM is used for confirmative purposes only, VB-SEM can also 

be used for predictive purposes. The aim of VB-SEM is to maximise the explained variance of the latent 

variable (Jaya, Hermina & Sunengsih, 2019). Table 2 shows the main differences between VB-SEM and 

CB-SEM. In this research, the VB-SEM approach will be used since the main objective of this research 

is prediction oriented. Additionally, VB-SEM will be used because of the non-normality of some of the 

observed variables that were identified in the literature review and that will be included in the SEM 

model.  

Table 2: Differences between VB-SEM and CB-SEM (Based on: Jaya, Hermina & Sunengsih, 2019; 

Hanafiah, 2020) 

 VB-SEM CB-SEM 

Objective Prediction oriented Parameter oriented 

Approach Variance Covariance 

Distribution assumption Non-parametric Parametric 

Required sample size Small (min. 30-100) Large (min. 100-800) 

Model complexity High Low to average (high complexity 
models become problematic) 

Indicators per construct No constraint Minimum three to meet 
identification criteria 

Measurement model Reflective and formative Reflective only 

Goodness of fit measure None Many 

Implication  Optimal for prediction Optimal for parameter estimation 

Software SmartPLS, WarpPLS, PLS-Graph Amos, Lisrel, MPlus 

Three types of SEM models can be created to measure latent constructs: reflective, formative, and 

network models. In a reflective model the latent construct reflects on the observed variables and the 

model analyses how much the latent construct influences the observed variables. A requirement of a 

reflective model is that all observed variables should have a high collinearity with each other. In a 

formative model, the causality goes from indicators to the latent construct since observed variables 

are considered to form the latent construct (Sekar & Rai, 2018). Contrary to reflective models, the 

latent construct that is analysed is affected by the types of indicators that represent the construct and 

the number of constructs in the SEM model (Hanafiah, 2020). In formative models, all observed 

variables represent a unique part of the latent construct and therefore high correlations between the 

observed variables should be avoided. Reflective models are usually analysed with more subjective 

data while formative models are usually analysed with objective data. Network models are clusters 

with no defined directions between a latent construct and the observed variables (Sekar & Rai, 2018). 

For this research, a formative SEM model will be created and analysed since the latent construct 
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energy poverty will be formed by the model and it is expected that all observed variables will have an 

unique effect on this latent construct.  

There are relatively few evaluation criteria in order to determine the validity and reliability of 

formative measurement models (Jaya, Hermina & Sunengsih, 2019). Formative measurement models 

can be assessed by analysing the convergent validity, indicator collinearity, and significance of the 

indicator weights determined by the SEM model (Hair et al, 2021). However, analysing the convergent 

validity is only possible when the SEM model contains both formative and reflective constructs. VB-

SEM software programs determine the significances of calculated indicator weights, and the indicator 

collinearity can be assessed through the variance inflation factor (VIF). Both the bivariate analysis and 

VIF will be analysed to determine if there are high correlations between the observed variables. These 

high correlations should be avoided since they have an impact on the estimations of the path 

coefficients and their statistical significances. If the VIF is larger than 3.3 there is a potential issue with 

the indicator collinearity (Diamantopoulos & Siguaw, 2006) and if the VIF is larger than 5.0 there is a 

certain indicator collinearity problem (Hair, Ringle & Sarstedt, 2011). 

For this research, a VB-SEM will be created using the SmartPLS software. SmartPLS allows for the 

creations of VB-SEM models that include complex relationships. SmartPLS was released in 2005 and 

represents the SEM in the standard SEM notation used in academic research. Latent variables are 

represented by an ellipse, observed variables are represented by a rectangle and error terms are 

represented by a circle. Covariance paths are represented by a double headed arrow while regression 

paths are represented by a single headed arrow. The results of the VB-SEM model in SmartPLS will be 

path coefficients between the observed variables and the latent variable. These ‘structural equations’ 

explain how the variables are related to each other and the independent variable, both directly and 

indirectly. The VB-SEM that will be created in SmartPLS will include all relevant variables and will be 

able to predict energy poverty with the largest prediction power that is possible. From this SEM model 

it will be possible to draw several results that will be concluded and discussed in later sections of this 

research. 

3.4. Data 
This section describes the dataset and the variables of the dataset that were selected to perform this 

research. The variables selected from the dataset include all relevant variables from the literature 

review that were included in the conceptual model. All different data analyses in this research will be 

performed with these variables selected from the dataset. 

The dataset that was selected for this research is the WoonOnderzoek Nederland (WoON) 2021 

dataset. The WoON dataset is created through the WoON research, a successor of the Dutch housing 

preferences research that was performed since 1981. The WoON research is a large national research 

conducted every three years by the Centraal Bureau voor de Statistiek (CBS) since 2006. Since 2009, 

the WoON research is conducted by a collaboration of the CBS and the Ministerie van Binnenlandse 

Zaken en Koningrijkrelaties. The aim of the WoON research is to collect statistical data about the 

housing situation of the Dutch population and to gain insights into their wishes and demands regarding 

multiple topics. These topics include the housing situation of households, housing environments, 

satisfaction, housing preferences, relocation preferences, and housing costs (Ministerie van 

Binnenlandse Zaken en Koningsrelaties, 2022). 

The WoON research is a sample survey aimed at inhabitants of the Netherlands over the age of 

seventeen. The data of the research is collected through personal interviews, telephone interviews 

and online surveys. Afterwards, this data is augmented by data from existing registers. The WoON 
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survey has a sample size of at least 60,000 respondents in order to provide reliable information. A 

weighting factor is added to the results of the survey to correct for differences between the 

composition of the respondents in the sample and the total population of the Netherlands (Centraal 

Bureau voor de Statistiek, n.d.). The result of the WoON research is a dataset that is highly 

representative of the Dutch population. Because of this, the results of the WoON research function as 

an important base for the housing policy of the Dutch government (Rijksoverheid, n.d.a). The WoON 

2021 dataset selected for this research is the most recent version of the WoON database. This version 

of the WoON dataset was presented in June 2022 and represents the period between 2018 and 2021 

(Ministerie van Binnenlandse Zaken en Koningsrelaties, 2022). 

3.5 Data preparation 
KNIME: the Konstanz information miner tool was used to prepare the data for the analyses. KNIME is 

an open-source data analytics platform that was developed at the University of Konstanz in Germany. 

The first version of the tool was released in 2006 as an open-source platform with the aim to process, 

transform and analyse big data. KNIME has no limitations regarding the size of the data that needs to 

be processed (KNIME, n.d.). KNIME is a modular environment in which an interactive data pipeline 

(workflow) consisting of data processing nodes and flows can be assembled and executed. New data 

processing and model building algorithm nodes can be added to the model through a drag & drop 

function to easily expand an existing model. Nodes are selected from a large node repository 

consisting of data readers, data manipulation, data transformation, mining algorithms, machine 

learning, statistics, visualisation, and scripting nodes. Because of the graphical overview of the tool, 

the user is always able to view the results of the workflow between all data processing steps. This 

enables the user to easily explore and check the data throughout the workflow. All nodes in the model 

show a node status (configured, executed, failed). Because of this, a KNIME user can easily spot errors 

in the execution of the workflow and the user can then check these errors in the node dialog. KNIME 

has been designed as an open-source teaching, research, and collaboration platform. Because of this 

new algorithm, data manipulation or visualisation method nodes are still being added to increase the 

power of the tool (Berthold et al, 2006).  

The KNIME workflow that was created consists of over 300 nodes to prepare the WoON 2021 dataset 

for the analyses. Nodes used in the created KNIME workflow include data readers, column and row 

filters, rule engines, math formulae, and data writers. First, all variables relevant for this research are 

selected from the large dataset. These variables and their measurement scales are shown in appendix 

2. Second, the names or categories of some variables are recoded. Since variables in the WoON 2021 

dataset often have abbreviated or coded names, some variables were recoded to have a different 

name that more clearly explained the variable that is represented. The value categories of some 

variables were recoded to reduce the amount of value categories that a categorical value could have, 

or to combine categories with relatively few responses. Next, all data was filtered for missing values. 

Since SEM cannot be performed with data that includes missing values, the respondents that had 

some data missing were removed from the dataset. After all data was filtered and the missing cases 

were removed, 8,907 respondents remained in the dataset for the analyses. For the remaining 

respondents in the dataset the EQ, LIHC, MIS, HCOR, and LILEQ energy poverty indicators were 

calculated to be analysed in the FA. Finally, the value categories of all categorical variables that are 

included in the SEM were recoded into dummy variables. This was needed since SEM models cannot 

include categorical variables unless they are recoded into dummy variables. 
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4. Results 
In this chapter, the results of the analyses are conducted will be described. First the descriptive 

analysis shows the value categories of the included variables. Next, the bivariate analyses show the 

representativeness of the sample and the correlations between independent variables. The results of 

the EFA show if all existing energy poverty indicators measure the same latent concept. The 

coefficients of the SEM model and prediction model are shown. Finally, the analyses of the high risk 

group and effects of policies will be shown.  

4.1 Descriptive analysis 
The first analyses that were performed after all required data had been prepare were multiple 

descriptive analyses. The descriptive analyses of all categorical variables included in the research will 

be described in this section. All descriptive analyses will present both the frequencies and percentages 

of the value categories of the selected categorical variables. Additionally, the descriptive analyses will 

help to visualise how the respondent cases are distributed for all variables.  

Categorical socio-demographic characteristics 
The descriptive analyses of the socio-demographic variables included in the model were the first to be 

conducted. These variables consider the household or the respondent of the WoON 2021 

questionnaire. The frequencies of the household type show that more than half of all respondents in 

the dataset (53.7%) are single-person households. The second largest value category of household 

type in the data is couple without children and the smallest value category is the other household 

composition category. Just over 20% of the respondents in the data live in a household with children. 

The frequencies and corresponding percentages of the household types of the respondents are shown 

in table 3. Because of the limited number of respondents of the other household composition 

category, respondents of this category were removed from the dataset. After the removal of these 

respondents, 8,658 respondents remained in the dataset. 

Table 3: Household type frequencies and percentages 

Household type 

 Frequency (count) Percent 

Single-person 4,780 53.7 

Single-parent with children 917 10.3 

Couple without children 2,054 23.0 

Couple with children 907 10.2 

Other household composition 249 2.8 

Total 8,907 100.0 

Most respondents in the dataset have a HAVO, VWO, or MBO education level, followed by the value 

category of the VMBO and MBO1 education levels. These education level value categories consist of 

over 60% of all respondents. 18.5% of the respondents in the dataset have a primary education level 

while 19.6% of the respondents have a bachelor or master’s degree. Table 4 shows the frequencies 

and percentages of the education levels of the respondents in the dataset.  
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Table 4: Education level frequencies and percentages 

Education level 

 Frequency (count) Percent 

Primary education 1,599 18.5 

VMBO, MBO1 2,318 26.8 

HAVO, VWO, MBO 3,042 35.1 

HBO/WO-bachelor 1,181 13.6 

HBO/WO-master 518 6.0 

Total 8,658 100.0 

The final socio-demographic variable that was included in the descriptive analysis is the age of the 

respondents. The descriptive analysis shows that most respondents are in the value categories for the 

higher ages. Most respondents in the dataset are aged between 65 and 74, followed by those who are 

75 years or older and those aged between 55 and 64. More than 40% of all respondents are aged 65 

or olde. The frequencies and percentages of the variable representing the age of the respondents are 

shown in table 5. 

Table 5: Age frequencies and percentages 

Age 

 Frequency (count) Percent 

34 or younger 1,320 15.2 

35-44 1,047 12.1 

45-54 1,189 13.7 

55-64 1,598 18.5 

65-74 1,832 21.2 

75 or older 1,672 19.3 

Total 8,658 100.0 

 

Categorical dwelling characteristics 
After the descriptive analysis of the socio-demographic variables, the variables of the dwelling 

characteristics were analysed. Regarding the degree or urbanisation in which the households in the 

dataset live, most respondents indicated to live in a highly urbanised area. More than 60% of all 

respondents in the dataset live in an area with a high or very high urbanisation while about 20% of the 

respondents live in an area with a low or no urbanisation. The frequencies and percentages of the 

value classes for the degree of urbanisation of the locations of the households is shown in table 6. 

Table 6: Degree of urbanisation frequencies and percentages 

Degree of urbanisation 

 Frequency (count) Percent 

No 606 7.0 

Low 1,133 13.1 

Average 1,450 16.7 

High 2,654 30.7 

Very high 2,815 32.5 

Total 8,658 100.0 
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When looking at the value categories of the dwelling sizes, the descriptive analysis shows a relatively 

normal distribution. Most households in the dataset live in a dwelling with a size between 75 and 99 

square metres. Less than 1 percent of the respondents in the dataset live in a dwelling with a floor 

space of 150 square metres or more. Table 7 shows the frequencies and percentages of the dwelling 

sizes in the dataset. Because of the limited number of respondents of the 150m2 or more category, 

respondents of this category were removed from the dataset. After the removal of these respondents, 

8,600 respondents remained in the dataset. 

Table 7: Dwelling size frequencies and percentages  

Dwelling Size 

 Frequency (count) Percent 

Less than 50m2 539 6.2 

50-74m2 2,318 26.8 

75-99m2 3,466 40.0 

100-149m2 2,277 26.3 

150m2 or more 58 0.7 

Total 8,658 100.0 

Most dwellings in the dataset were constructed between 1975 and 1991, followed by the dwellings 

constructed between 1965 and 1974. 12.6% of all dwellings in the dataset are in the value category of 

the newest dwellings while only 8.0% of all dwellings are in the oldest value category. The frequencies 

and percentages of the dwelling construction years are shown in table 8. 

Table 8: Dwelling construction year frequencies and percentages 

Dwelling construction year 

 Frequency (count) Percent 

1945 or older 690 8.0 

1946-1964 1,518 17.7 

1965-1974 1,851 21.5 

1975-1991 2,471 28.7 

1992-2005 985 11.5 

2006 or newer 1,085 12.6 

Total 8,600 100.0 

Regarding the dwelling type of the dwellings in the dataset, the descriptive analysis shows that most 

dwellings are apartments (53.8%). Terraced and semi-detached dwellings both have more than 1,000 

respondents in the dataset however there are only thirteen detached dwellings in the dataset. 

Because of the limited number of respondents of the detached dwelling category, this category was 

removed from the dataset. After this category was removed, 8,587 respondents remained in the 

dataset. Table 9 shows the frequencies and percentages of the dwelling types in the dataset.  

Table 9: Dwelling type frequencies and percentages 

Dwelling type 

 Frequency (count) Percent 

Apartment 4,624 53.8 

Terraced  2,597 30.2 

Semi-detached  1,366 15.9 

Detached 13 0.2 

Total 8,600 100.0 
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The final categorical dwelling variable considered in this research is the presence of solar panels on 

the dwellings. The descriptive analysis shows that most dwellings do not have solar panels, while 

14.8% of the dwellings do have solar panels. The frequencies and percentages of the value categories 

of the presence of solar panels are shown in Table 10. 

Table 10: Solar panels frequencies and percentages 

Solar panels 

 Frequency (count) Percent 

Yes 1,269 14.8 

No 7,318 85.2 

Total 8,587 100.0 

An overview of the categories, frequencies, and percentages of the categorical variables remaining 

in the dataset after the descriptive analysis is shown in appendix 3. 

Continuous characteristics 
After the descriptives of the categorical variables were analysed, the same was done for all continuous 

variables in the dataset. A histogram of the annual spendable incomes of the respondents is shown in 

figure 5.  

 
Figure 5. Histogram annual spendable income of the respondents. 

Figure 5 shows that the annual spendable incomes of the respondents in the dataset have relatively 

normal distribution with a slight positive skew. Very few respondents have an annual spendable 

income below €10,000 and most respondents have an annual spendable income between €20,000 

and €25,000. The average spendable income of all respondents in the dataset is €24,350. 
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After the descriptives of the continuous variable income were analysed, the same could be done for 

the annual energy expenditure of the households. Figure 6 shows a histogram of the annual energy 

expenditures of all households in the dataset. 

 
Figure 6. Histogram annual energy expenditures of the respondents. 

The histogram in figure 6 shows that the annual energy expenditure of the households has a relatively 

normal distributions with a slight positive skew. Most respondents have an annual energy expenditure 

between €1,400 and €1,600 and the average annual energy expenditure of the households in the 

dataset is €1,650. 

Figure 7 shows the histogram of the annual electricity usage of the households in the dataset. 

 
Figure 7. Histogram annual electricity usage [kWh] of the households. 

Figure 7 shows that the annual electricity usage of the respondents is normally distributed with a 

positive skew. Most have an annual electricity usage between 1,250 and 1,500 kWh and the average 

annual electricity usage of the respondents in the dataset is 1,920 kWh. 
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The histogram of the annual gas usage of the households in the dataset is shown in figure 8. 

 
Figure 8. Histogram annual gas usage [m3] of the households. 

The histogram in figure 8 shows that there are relatively many households that have an annual gas 

usage in the category between 0 and 100 m3. This category is relatively large since it includes all gas-

free dwellings in the dataset. Other than the first category, the histogram shows a relatively normal 

distribution with a positive skew. Most households in the dataset have an annual gas usage between 

800 and 900 m3 and the average annual gas usage of the respondents in the dataset is 762 m3.  

The final categorical variable included in the conceptual model and dataset is the variable representing 

the annual other housing costs of the households. A histogram of the annual other housing costs is 

shown in figure 9. 

 
Figure 9. Histogram annual other housing costs of the respondents. 

The results in figure 9 show that the distribution of the annual other housing costs is positively skewed. 

Most respondents have annual other housing costs between €5,000 and €6,000 and the average 

annual other housing costs of all respondents is €7,559. 
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4.2 Bivariate analysis 
In this section the bivariate analyses that were performed will be described. First, the sample 

representativeness of the WoON 2021 dataset will be tested for multiple variables. These variables 

include both socio-demographic and dwelling characteristics. The results of the sample 

representativeness bivariate analyses will show how representative the WoON 2021 sample is for all 

social housing dwellings and the inhabitants of these dwellings. After the sample representativeness 

is tested, multiple other bivariate analyses will be conducted to determine the potential relations 

between exogeneous variables in the created model.  

Sample representativeness 
Multiple chi-square tests were conducted to determine if the selected WoON 2021 data is 

representative for all social housing dwellings and their inhabitant. In the chi-square tests, the 

observed percentages of the value classes of the WoON 2021 data were compared with the value 

categories of the social housing sector. If the social housing sector information was unavailable, the 

WoON 2021 data was compared to the distributions of these value classes of the entire population of 

the Netherlands. Some of the additional data that was gathered had to be recoded to match the value 

categories of the variables in the WoON 2021 data. The KNIME program was used to do this where 

needed. The results of the chi-square tests will be interpreted by looking at the p-values that result 

from the analyses. If the p-value of a chi-square test is less than 0.05, this indicates that there is a 

significant difference between the sample data and the larger datasets that were gathered. 

The first variables included in the model that were tested for their representativeness were the 

education level and age of the residents. Since the data of these characteristics was not available in 

the CBS StatLine database for social housing only, the distributions of respondents were compared to 

data of all persons and dwellings in the Netherlands. The results of the chi-square tests of the 

education level and age of respondents both showed p-value below 0.05. These results, shown in table 

11 and 12 respectively, mean that there is a significant difference between the sample and the total 

population. The sample cannot be considered as representative for the entire population of the 

Netherlands regarding education level and age. However, this is expected since it is known that there 

are differences between the people living in social housing and the total population of the 

Netherlands. 

Table 11: Sample representativeness education level. 

Education level WoON 2021 CBS Chi-square test p-value 

Primary education 18.4 8.9 0.000 

VMBO, MBO1 26.8 11.3  

HAVO, VWO, MBO 35.2 45.1  

HBO/WO-bachelor 13.6 21.8  

HBO/WO-master 6.0 12.9  

Table 12: Sample representativeness age. 

Age WoON 2021 CBS Chi-square test p-value 

34 or younger 15.2 27.9 0.002 

35-44 12.1 14.5  

45-54 13.7 16.8  

55-64 18.5 16.7  

65-74 21.2 13.7  

75 or older 19.3 10.4  



  

DEVELOPING AN ENERGY POVERTY RISK INDEX FOR SOCIAL HOUSING IN THE NETHERLANDS 35 

 

Similarly to the previously mentioned variables, the data regarding the degree of urbanisation of the 

social housing dwellings in the Netherlands was not available in the database of CBS StatLine. 

However, contrary to the previously mentioned variables, the degree of urbanisation of social housing 

dwellings could be determined based on two datasets present in the CBS StatLine database. KNIME 

was used to combine the information of the degree of urbanisation of each municipality in the 

Netherlands with the amount of social housing dwellings in each municipality in the Netherlands. 

Using this data, the chi-square test of the degree of urbanisation resulted in a p-value of 0.636. This 

result means that the WoON 2021 sample is representative for the degree of urbanisation of all social 

housing dwellings in the Netherlands. The result of the chi-square test for the representativeness of 

the degree of urbanisation in the WoON 2021 dataset is shown in table 13. 

Table 13: Sample representativeness degree of urbanisation. 

Degree of urbanisation WoON 2021 CBS Chi-square test p-value 

No 7.0 4.7 0.636 

Low 13.0 16.0  

Average 16.6 13.4  

High  30.8 31.8  

Very high 32.6 34.1  

Since the data of the household types of households living in social housing dwellings was not available 

in the CBS StatLine database, this information was gathered from the Vereniging van Nederlandse 

Gemeenten (VNG). Testing the sample representativeness of the household types using a chi-square 

test, the results shown in table 14 show a p-value of 0.545. This result means that the WoON 2021 

sample is representative for the entire social housing population of the Netherlands regarding 

household type. 

Table 14: Sample representativeness household type. 

Household type WoON 2021 VNG Chi-square test p-value 

Single-person 55.3 51.8 0.545 

Single-parent with children 10.3 13.8  

Couple without children 23.0 20.8  

Couple with children 10.2 13.6  

For testing the sample representativeness of the dwelling characteristics in the WoON 2021 data 

sample, Republiq provided a dataset that included the dwelling characteristics of all social housing 

dwellings in the Netherlands. This provided dataset combines both information from the 

Eigendomsdata Kadaster and the Basisadministratie gebouwen (BAG). Since this dataset was complete 

and very elaborate, the dataset provided ideal data to test the sample representativeness of the 

dwelling size, construction year and dwelling types included in the WoON 2021 data. The results of 

the chi-square tests of these variables are shown in tables 15, 16, and 17, respectively.  

Table 15: Sample representativeness dwelling size. 

Dwelling size WoON 2021 Republiq Chi-square test p-value 

Less than 50m2 6.5 5.6 0.942 

50-74m2 26.9 29.0  

75-99m2 40.1 40.4  

100m2 or more 26.5 25.2  
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Table 16: Sample representativeness dwelling construction year. 

Dwelling construction year WoON 2021 Republiq Chi-square test p-value 

1945 or older 8.2 9.3 0.914 

1946-1964 17.7 20.0  

1965-1974 21.5 21.1  

1975-1991 28.4 28.8  

1992-2005 11.5 11.3  

2006 or newer 12.7 9.5  

Table 17: Sample representativeness dwelling type. 

Dwelling type WoON 2021 Republiq Chi-square test p-value 

Apartment 53.8 52.5 0.968 

Terraced 30.3 30.9  

Semi-detached 15.9 16.5  

The results of the chi-square tests of the social housing dwelling characteristics all have a value above 

0.05, meaning that the WoON 2021 sample is representative for the analysed dwelling characteristics. 

Especially the division of dwelling types among the value categories was extremely representative for 

all dwellings with a p-value of almost 1. 

The final variable in the WoON 2021 data sample that could be tested for representativeness for all 

social housing dwellings wat the presence of solar panels. The data including all social housing 

dwellings in the Netherlands used for the comparison was gathered from Aedes. The results of the 

chi-square test shown in table 18 show a p-value relatively close to 1. This result means that there is 

a no significant difference between the sample data and the larger dataset. Because of this, the WoON 

2021 dataset can be considered to be representative for all social housing dwellings regarding the 

presence of solar panels.  

Table 18: Sample representativeness solar panels. 

Solar panels WoON 2021 Aedes Chi-square test p-value 

Yes 14.8 16.1 0.998 

No 85.2 83.9  
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Correlations between exogeneous independent variables 
After the representativeness of the data sample was tested, the relations between exogeneous 

independent variables in the model had to be tested for multicollinearity. Multicollinearity occurs 

when the independent variables are strongly correlated. If there is a high correlation between 

independent variables, the effect of one of these variables on energy poverty may be explained 

through the other variable and not by its direct effect on energy poverty. Multicollinearity between 

variables is not desired since this may decrease the statistical reliability of the results. If the results of 

the bivariate analysis show that there is multicollinearity between independent variables, the choice 

will be made to remove one of these variables from the model to improve its reliability. The bivariate 

analysis technique that is needed to analyse the relations between independent variables is based on 

the measurement scales of the variables. An overview of the independent variables, their 

measurement scales, and the needed bivariate analysis methods based on the measurement scales is 

shown in table 19. 

Table 19: Measurement scales of the exogenous independent variables and the needed bivariate 

analysis techniques 

  Independent variable B 

Solar panels Household 
type 

Education 
level 

Other 
housing 
costs Age 

Degree of 
urbanisation 

Dwelling 
type 

Dwelling 
size 

Dwelling 
construction 
year 

Measurement 
scale 

Nominal 
(dichotomous) 

Nominal Ordinal Ratio 

In
d

ep
en

d
en

t 
va

ri
ab

le
 A

 

Solar panels 
Nominal 

(dichotomous) 

Chi-square test 

Mann-
Whitney U-

test 

Independent 
samples t-

test 

Household 
type 

Nominal 
Kruskal-
Wallis H-

test 

Analysis of 
variance 
(ANOVA) 

Dwelling 
type 

Education 
level 

Ordinal 
Mann-

Whitney U-
test 

Kruskal-
Wallis H-

test 

Spearman 
correlation 

Spearman 
correlation 

Age 

Degree of 
urbanisation 

Dwelling 
size 

Dwelling 
construction 
year 

Other 
housing 
costs 

Ratio 
Independent 

samples t-test 

Analysis of 
variance 
(ANOVA) 

Spearman 
correlation 

Pearson 
correlation 
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The variables in the model are measured on a dichotomous nominal scale, nominal scale, ordinal scale, 

or on a ratio scale. Because of this, the bivariate analysis techniques that are needed are the chi-

square test, Mann-Whitney U-test, Kruskal-Wallis H-test, independent samples t-test, analysis of 

variance (ANOVA), and the Spearman correlation test. For each of these tests, the correlation 

coefficients or effect sizes between variables will be calculated. Both the se correlation coefficient and 

effect sizes can then be interpreted using Cohen’s standard. According to Cohen’s standard, 

coefficients less than 0.10 represent negligible correlations (Schober, Boer & Schwarte, 2018). 

Coefficient between 0.10 and 0.29 represent weak correlations, coefficients between 0.30 and 0.49 

represent moderate correlations and coefficients between 0.50 and 0.9 represent strong correlations 

(Statistics Solutions, n.d.). Finally, coefficients stronger than 0.9 represent very strong correlations 

according to Cohen’s standard (Schober et al, 2018). The presence of multicollinearity is often 

assumed with coefficients larger than 0.7 however the reliability of a model is better when strong 

correlations are avoided (M., 2019).  

Nominal-nominal 

The bivariate analyses between dichotomous nominal and nominal exogeneous independent were 

the first analysed performed to test the relations between the exogeneous independent variables. 

Because of the measurement scales of these variables, chi-square tests were needed to test for the 

independence of the variables. For all of the chi-square tests results, the Pearson chi-square could be 

interpreted. The first chi-square analysis performed analyses the relations between the only 

dichotomous nominal variable, solar panels, and the other nominal variables. The results of this 

analysis are shown in appendix 4. The results show relatively large Pearson chi-square values that are 

all significant at the 5% level, indicating statistically significant relations between the variables. In 

order to determine if these statistically significant relations are strong, moderate, weak, or negligible, 

the symmetric measure Cramer’s V had to be calculated since one of the variables in each chi-square 

test has more than two value classes. The symmetric measures for the dichotomous nominal and 

nominal variables show statistically significant results for Cramer’s V. These results show that the 

presence of solar panels has a negligible relation with the household type and a weak relation with 

the dwelling type.  

The second chi-square test that was performed analyses the relation between the exogeneous 

independent nominal variables of the model, household type and dwelling type. The results of this 

chi-quare test are show in appendix 5. Again, the Pearson chi-square value is relatively large and 

statistically significant, indicating a significant relation between the variables. Cramer’s V was 

calculated to determine the effect size of the relation between household type and dwelling type. The 

results of this calculation show a statistically significant value of 0.203 for Cramer’s V. Based on this 

result, it can be determined that there is a weak relation between household type and dwelling type.  

Nominal (dichotomous) – ordinal 

After the relations between the nominal variables were analyses, the relations between the 

dichotomous variable solar panels and all ordinal variables were tested. Based on the measurement 

scales of these variables, a Mann-Whitney U-test should be used for the bivariate analysis. The results 

of these Mann-Whitney U-tests are shown in appendix 6. The results of the Mann-Whitney U-tests all 

show large Mann-Whitney U-values that are all statistically significant except for the variable 

representing the education level. Because of this, it can be determined that there is no statistically 

significant relation between the presence of solar panels and the education level of the inhabitants. 

All other ordinal variables do show a significant relation with the presence of solar panels. Because of 

this, it should be determined how large these effects are so multicollinearity can be avoided. The 
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relation between the presence of solar panels and the ordinal variables can be calculated using 

formula 7.  

• 𝑟2 =
𝑍2

𝑛
           (7) 

In this formula Z represents the standardised value for the U-value, n represents the total numbers of 

observations on which Z is based, and r2 represents the effect size index (Tomczak & Tomczak, 2014). 

The results of the r2 calculations shown in appendix 6 all have a value of less than 0.1. Because of this 

it can be determined that the relations between the presence of solar panels and the ordinal variables 

included in this research are negligible. The education level forms an exception to this, since no 

statistically significant relations was found between the presence of solar panels and the education 

level.  

Nominal (dichotomous) – ratio 

The relation between the dichotomous nominal variable solar panels and the ratio variable other 

housing costs in the model can be analysed by using an independent samples t-test. This independent 

samples t-test was conducted, and the results of this test are shown in appendix 7. The results of this 

independent samples t-tests shows a significant value for Levene’s tests for equality of variances. 

Because of this result, equal variances should not be assumed and the significance of the t value for 

this category should be interpreted. The t value when equal variances are not assumed is statistically 

significant, indicating significant difference between groups and a significant relation between the 

presence of solar panels and the other housing costs. Because of this, the effect sizes of the presence 

of solar panels on the other housing costs should be calculated to check for multicollinearity. Hedges’ 

g coefficient is calculated to determine the effect size of the independent samples t-test. Hedges’ g 

coefficient is calculated using formula 8. 

• 𝑔 =
𝑥1̅̅̅̅ −𝑥2̅̅̅̅

√
(𝑛1−1)𝑠1

2+(𝑛2−1)𝑠2
2

𝑛1+𝑛2−2

         (8) 

In this formula x1 and x2 represent the means of the first and second sample. n1 and n2 represent the 

number of observations in groups (group 1, group 2) and s1 and s2 represent the standard deviation in 

groups (group 1, group 2) (Tomczak & Tomczak, 2014). The result of the calculation of Hedges’ g is 

shown in appendix 7. Based on the result of this calculations, it can be determined that the presence 

of solar panels has a weak relation with the other housing costs. 

Nominal – ordinal 

Kruskal-Wallis H-tests were conducted in order to analyse the potential relations between the nominal 

variables household type and dwelling type and the ordinal variables included in the model. First, the 

Kruskal-Wallis H-tests for the household type and the ordinal variables were conducted. The results 

of these Kruskal-Walls H-tests are shown in appendix 8. The Kruskal-Wallis H-tests shown in appendix 

8 all yield significant results, indicating statistically significant relations between household type and 

the ordinal variables. Because of these statistically significant results, it is important to test the 

strengths of the relations between the household type and the ordinal variables. In order to test this, 

the epsilon square coefficient can be calculated and interpreted. The epsilon squared coefficient can 

be calculated using formula 9. 

• 𝛦𝑅
2 =

𝐻

(𝑛2−1)/(𝑛+1)
         (9) 

In this formula 𝛦𝑅
2 represents a coefficient with a value between 0 (no relationship) and 1 (perfect 

relationship). Additionally, H represents the Kruskal-Wallis H-test statistic obtained in all Kruskal-
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Wallis H-tests and n represents the total number of observations (Tomczak & Tomczak, 2014). The 

calculated epsilon squared coefficients shown in appendix 8 show relatively low values. Based on 

these coefficients it can be determined that the household type has a weak relation with age and the 

dwelling size. Furthermore, the results of the epsilon squared tests show that household type has a 

negligible relation with the education level, degree of urbanisation, and dwelling construction year.  

After all Kruskal-Wallis H-tests for the household type and the ordinal variables were performed, the 

same had to be done for the nominal variable representing the dwelling types. The results of these 

Kruskal-Wallis H-tests are shown in appendix 9. The results of these Kruskal-Wallis H-tests are all 

significant, indicating statistically significant relations between the dwelling type and the ordinal 

variables. Again, the epsilon square coefficients were calculated to determine the strengths of the 

relations between the variables. The calculated epsilon square coefficients shown in appendix 9 show 

various strengths of relations between the dwelling type and the ordinal variables. By interpreting the 

epsilon square coefficients, it can be determined that the relations between the dwelling type and the 

education level, age and dwelling construction year are negligible. Additionally, the relation between 

dwelling type and degree of urbanisation is a weak relation while the relation between dwelling type 

and dwelling size is a moderate relation.  

Nominal – ratio 

The relations between the nominal variables and the ratio variable in the model are analysed using 

the bivariate technique ANalysis Of VAriance (ANOVA). The first ANOVA that was performed analysed 

the relations between the nominal variable household type and the other housing costs. The result of 

this ANOVA is shown in appendix 10. The results of the ANOVA show a significant value for the Levene 

statistic, indicating the presence of statistically significant relation between the variables. The results 

furthermore show a significant result of the F statistic and therefore significant differences between 

groups. Because of these results, it is important to determine the strength of the relation between the 

household type and the other housing costs. Formula 10 is used to calculate the omega squared value 

that can be interpreted as the effect size of an ANOVA. 

• 𝜔2 =
𝑑𝑓𝑒𝑓(𝑀𝑆𝑒𝑓−𝑀𝑆𝑒𝑟)

𝑆𝑆𝑡+𝑀𝑆𝑒𝑟
         (10) 

In formula 11, dfef represents the degrees of freedom of the effect between groups and SSt represents 

the total sum of squares. Additionally, MSef represents the mean square of the effect, while MSer 

represents the mean square error (Tomczak & Tomczak, 2014). The results of the omega squared 

calculations for the relations between the household type and the other housing costs are shown in 

appendix 10. From these omega squared calculations it can be determined that the relation between 

household type and other housing costs is a weak relation.  

A second ANOVA had to be performed to analyse the relation between the dwelling type and the 

other housing costs. The result of this ANOVA is shown in appendix 11 and does not show a significant 

value for the Levene statistic. This result indicates that there is no significant relation between the 

dwelling type and other housing costs. 

Ordinal – ordinal 

The Spearman correlation was used to determine the relations between the ordinal variables in the 

model. The results of the Spearman correlation analyses performed in SPSS are shown in appendix 12. 

The results of the Spearman analyses between the ordinal variables all show a statistically significant 

result except for the relation between the dwelling construction year and the education level of 

inhabitants. All other ordinal variables have a statistically significant relation with various strengths. 
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The education level has a moderate relation with age, a weak relation with the degree of urbanisation, 

and a negligible relation with the dwelling size. Age has a weak relation with the degree of urbanisation 

and dwelling size and a negligible relation with dwelling construction year. Furthermore, the degree 

of urbanisation has weak relations with both the dwelling size and construction year. Finally, the 

relation between the size of a dwelling and the construction year of a dwelling is negligible.  

Ordinal – ratio 

The final bivariate analysis technique that was needed to analyse the relations between the exogenous 

independent variables is the Spearman correlation. The Spearman correlation used to determine the 

correlations between the ordinal variables could also be used to determine the relations between the 

ordinal and the ratio variable in the model. The results of the Spearman correlation analyses between 

the ordinal and ratio variables in SPSS are shown in appendix 13. The results show significant relations 

between the education level, degree of urbanisation, dwelling size and construction year and the 

other housing costs. The other housing costs do not have a statistically significant relation with age. 

When the results of the spearman correlation coefficients are interpreted, it can be determined that 

the education level and dwelling construction year have a weak relation with the other housing costs. 

Additionally, the relation between the other housing costs and the dwelling size is a moderate relation 

while the relation between the degree of urbanisation and the other housing costs is negligible. 

The results of the bivariate analyses show that while most exogeneous independent variables have a 

statistically significant relation, most of these relations are weak or negligible. A relation of moderate 

strength was found between education level and age. Furthermore, the dwelling size has relations of 

moderate strength with the dwelling type and other housing costs. No relations stronger than 

moderate were found between the exogeneous independent variables. Because of this, no relations 

stronger than 0.7 were found and therefore multicollinearity between these variables can be ruled 

out. The absence of multicollinearity ensures that the reliability of the results of further analyses is 

not reduced.  

Correlations between exogeneous independent and endogenous dependent variables 
After the relations between exogeneous independent variables in the model were tested for 

multicollinearity, the same had to be done for some relations between exogeneous independent and 

endogenous dependent variables. Most exogeneous variables in the model are directly or indirectly 

related to the endogenous variables however two variables, age, and other housing costs, are not. For 

these variables, multicollinearity with the endogenous variables is not desired since this may reduce 

the reliability of the result. If multicollinearity is found between these variables, a choice will be made 

to remove one of the variables from the model to increase its reliability. Again, table 19 was used to 

determine the needed bivariate analysis techniques based on the measurement scales of the 

variables. The Spearman correlation was used to analyse the relations between age and the 

endogenous variables electricity usage, gas usage, income, and energy expenditure. The results of 

these Spearman correlations are shown in appendix 14. The results show no significant relation 

between age and the electricity usage. Furthermore, age has a weak relation with income and a 

negligible relation with gas usage and energy expenses. Because of the measurement scales of the 

variables, the Pearson correlation was used to analyse the correlations between the other housing 

costs and the endogenous variables. The results of these Pearson correlations are shown in appendix 

15. All relations between the other housing costs and the endogenous variables are statistically 

significant. The results show that the other housing costs have a weak relation with energy expenses 

and the gas usage, a moderate relation with the electricity usage, and a strong relation with the 

income. From the results of the bivariate analyses it can be concluded that there was no 
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multicollinearity between the exogenous and endogenous variables since there was no correlation 

coefficient of 0.7 or higher. However, because of the high correlation between income and the other 

housing costs, the choice was made to remove the other housing costs from further analyses to 

increase the reliability of the results. 

4.3 Exploratory factor analysis 
In this section the EFA will be described that was used to analyse if the existing energy poverty 

indicators represent and measure the same latent construct. If the existing energy poverty indicators 

represent the latent construct energy poverty, they will all have significant factor loading with this 

construct. The variables included in the EFA are the EQ, LIHC, MIS, HCOR, and LILEQ energy poverty 

indicators that are all measured on a continuous scale. Since the information of the existing energy 

poverty indicators was available for all respondents remaining in the used WoON dataset the sample 

size is sufficient with 8,587 respondents. Figure 10 shows the EFA model of the existing energy poverty 

indicators. 

 
Figure 10. EFA model energy poverty indicators 

After the variables that included in the EFA were identified, the next step of the FA process is to 

determine if the variables in the model are reliable measurements. The KMO measure of sampling 

adequacy and Barlett’s test of sphericity were determined to analyse the reliability of the variables 

included in the EFA. The results of the KMO and Bartlett’s tests are shown in appendix 16. The result 

of the KMO measure of sampling adequacy is larger than 0.5, indicating that the data sample is 

adequate for an EFA. The result of Bartlett’s test of sphericity shows a high chi-square value that is 

statistically significant. This result means that there exist significant relations among the variables and 

the variables relate to each other enough to perform an EFA. The strengths of the relations between 

the existing indicators could be analysed using the correlation matrix shown in appendix 17. This 

correlation matrix shows that most correlations between the energy poverty indicators are statistically 

significant except for the relations between MIS and the EQ, LIHC, and LILEQ indicators. All correlations 

are less than 0.8 except for the relation between the EQ and HCOR indicators. Because of this result, 

it is crucial that the determinant of the correlation matrix is checked to avoid multicollinearity. 

Because the determinant of the correlation matrix is greater than 0.00001, it can be concluded that 

there is no multicollinearity between the observed variables. 

Since it was determined that the observed variables in the EFA model are reliable measurements, the 

FA could be conducted. After the FA was conducted, the initial and extraction values of the 

communalities were estimated. The communalities shown in appendix 18 describe the amount of 

variance that a variable shared with the other variables considered in the FA. The communalities show 

high extraction values for the communalities of the EQ, LIHC, HCOR and LILEQ indicators however the 

MIS indicators has a communality extraction factor less than 0.4. This result indicates that the MIS 
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indicators does not contribute much to the measurement of the underlying latent factor. In the fifth 

step of the EFA it is usually decided how many factors will be retained. However, since the goal of this 

EFA is to determine if all existing energy poverty indicators measure one common underlying latent 

factor, only one factor will be retained. When looking at the total variance explained in appendix 19, 

it can be seen that two factors would have been retained if the Kaiser-Guttman rule was used since 

two factors have an eigenvalue larger than 1. Since only one component is retained from the FA, no 

rotation is applied to the FA since this is only possible when there are two or more components. 

According to appendix 19, the component that is retained from the FA explains just over 50% of the 

total variance. 

In the final step of the EFA, the results are interpreted by looking at the component matrix. In the 

component matrix shown in appendix 20 the factor loadings are shown. These factor loadings are 

Pearson correlations that represent how strong the observed indicators represent the common 

underlying latent factor. Since factor loadings greater than 0.65 are considered to be strong 

associations, it can be seen that most observed indicators have a strong association with the 

underlying latent concept. This confirms the findings of Mulder et al (2023) who found that the EQ, 

LIHC, and LILEQ energy poverty indicators were relatively strongly correlated. Most of the observed 

indicators seem to load as one construct and are therefore considered to be good component factor 

scores. The MIS is an exception to this, as the component matrix and factor loadings and all other EFA 

tests show that this observed variable does not measure the same common underlying latent concept. 

Because of this, the MIS indicator will be omitted from further analyses with the existing energy 

poverty indicators.  

Because it was found that the MIS indicator did not measure a common underlying concept with the 

other energy poverty indicators, a second EFA was conducted without the MIS indicator. This second 

EFA resulted in the same values for almost all the steps and results of the first EFA except for the total 

variance explained. The total variance explained in the second EFA shown in appendix 21 shows that 

when the MIS indicator is removed from the EFA, the total variance explained of the first component 

increases from 50.180 to 61.212%.  

4.4 Structural equation modeling (SEM) 
After the EFA had been performed, the SEM model was created in SmartPLS. First, the processed data 

of the respondents remaining in the dataset was loaded into the SmartPLS programme. After the 

correct measurement scales of the variables were selected in SmartPLS, the loading of the data was 

completed. Second, the SEM model was drawn in SmartPLS by drawing rectangles for the observed 

variables and a circle for the latent variable. In the final step of the creation of the SEM model in 

SmartPLS, the relations between the variables were drawn in the SEM model. These relations are all 

based on the expected relations between the variables that were discovered in the literature review. 

The created SEM model in SmartPLS is shown in figure 11. 

 



  

DEVELOPING AN ENERGY POVERTY RISK INDEX FOR SOCIAL HOUSING IN THE NETHERLANDS 44 

 

 
Figure 11. SEM model in SmartPLS 

After the SEM model was created and the variables of the data were coupled to the model in SmartPLS, 

the path coefficients of the SEM model could be estimated. Based on more than 8,500 subsamples, 

the SEM model could estimate the standardised path coefficients between the variables included in 

the model. The results of the estimations of the path coefficients and P values are shown in table 20. 

Table 20: Path coefficient estimations and P values 

Variable 1 Variable 2 Path coefficient P value 

Household type 

Single-person Electricity usage REF . 

Couple without children Electricity usage 0.587 0.000 

Single-parent Electricity usage 0.599 0.000 

Couple with children Electricity usage 1.228 0.000 

Dwelling size 

Less than 50 Electricity usage REF . 

50-74 Electricity usage 0.172 0.000 

77-99 Electricity usage 0.315 0.000 

100 or larger Electricity usage 0.512 0.000 

Construction year 

1945 or older Electricity usage REF . 

1946-1964 Electricity usage 0.018 0.658 

1965-1974 Electricity usage 0.092 0.022 

1975-1991 Electricity usage 0.096 0.009 

1992-2005 Electricity usage 0.103 0.012 

2006 or later Electricity usage 0.192 0.000 

Dwelling type 

Apartment Electricity usage REF . 

Terraced Electricity usage 0.117 0.000 

Semi-detached Electricity usage 0.208 0.000 

Solar panels 
No Electricity usage REF . 

Yes Electricity usage -0.325 0.000 

Household type 

Single-person Gas usage REF . 

Couple without children Gas usage 0.129 0.000 

Single-parent Gas usage 0.197 0.000 

Couple with children Gas usage 0.224 0.000 

Dwelling size Less than 50 Gas usage REF . 
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50-74 Gas usage 0.173 0.000 

77-99 Gas usage 0.243 0.000 

100 or larger Gas usage 0.393 0.000 

Construction year 

1945 or older Gas usage REF . 

1946-1964 Gas usage 0.048 0.290 

1965-1974 Gas usage -0.082 0.074 

1975-1991 Gas usage -0.168 0.000 

1992-2005 Gas usage -0.406 0.000 

2006 or later Gas usage -0.677 0.000 

Dwelling type 

Apartment Gas usage REF . 

Terraced Gas usage 0.240 0.000 

Semi-detached Gas usage 0.431 0.000 

Solar panels 
No Gas usage REF . 

Yes Gas usage -0.075 0.008 

Electricity usage Energy expenses 0.359 0.000 

Gas usage Energy expenses 0.379 0.000 

Education level 

Primary school Income REF . 

Vmbo, mbo1 Income 0.100 0.000 

Havo, vwo, mbo Income 0.257 0.000 

Hbo, wo-bachelor Income 0.458 0.000 

Hbo, wo-master Income 0.589 0.000 

Household type 

Single-person Income REF . 

Couple without children Income 0.508 0.000 

Single-parent Income 0.365 0.000 

Couple with children Income 0.922 0.000 

Degree of 
urbanisation 

Not urbanised Income REF . 

Hardly urbanised Income 0.031 0.423 

Moderately urbanised Income -0.002 0.950 

Strongly urbanised Income -0.036 0.305 

Extremely urbanised Income -0.003 0.931 

Degree of 
urbanisation 

Not urbanised Energy poverty REF . 

Hardly urbanised Energy poverty -0.074 0.080 

Moderately urbanised Energy poverty -0.037 0.425 

Strongly urbanised Energy poverty -0.122 0.003 

Extremely urbanised Energy poverty -0.118 0.008 

Education level 

Primary school Energy poverty REF . 

Vmbo, mbo1 Energy poverty -0.050 0.030 

Havo, vwo, mbo Energy poverty -0.051 0.046 

Hbo, wo-bachelor Energy poverty -0.032 0.392 

Hbo, wo-master Energy poverty -0.014 0.832 

Age 

34 or younger Energy poverty REF . 

35-44 Energy poverty -0.183 0.000 

45-54 Energy poverty -0.133 0.002 

55-64 Energy poverty -0.105 0.017 

65-74 Energy poverty -0.221 0.000 

75 or older Energy poverty -0.274 0.000 

Energy expenses Energy poverty 0.238 0.000 

Income  Energy poverty -0.532 0.000 
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The results of the estimation of the SEM model show significant results for all path coefficients of 

variables connected to the electricity usage except for the path coefficient of dwellings constructed 

between 1946 and 1964. The results show that single-parent households and couples with and 

without children have a higher electricity usage than single-person households. The results 

furthermore show that electricity usage increases with the dwelling size of a building and that newer 

dwellings use more electricity than older dwellings. Compared to apartments, both terraced and semi-

detached dwellings have a higher electricity usage and the presence of solar panels reduces the energy 

usage.  

All variables related to the gas usage show similar significant path coefficients to those related to the 

electricity usage. Single-parent households and couples with and without children have a higher gas 

usage than single-person households. Larger dwellings have a higher gas usage than smaller dwellings 

and terraced and semi-detached dwellings have a higher gas usage than apartments. Where the path 

coefficients connected to electricity usage showed that newer dwellings use more energy, the 

opposite can be seen when looking at the path coefficients connected to the gas usage. These path 

coefficients show that there are no statistically significant differences in the amount of gas used for 

dwellings constructed before 1945, between 1946 and 1964 and between 1965 and 1974. However, 

from the dwellings constructed from 1975 and on, newer dwellings use increasingly less gas. Solar 

panels reduce the gas usage of a dwelling however this effect is smaller than the reduction in 

electricity usage when solar panels are present. 

The results of the SEM model show that both the electricity and gas usage have a statistically 

significant relation with a household’s energy expenses. The effects of the electricity and gas usage on 

the household energy expenses are relatively similar. However, the effect of electricity usage (0.359) 

is slightly less than the effect of gas usage (0.379) energy expenses of a household.  

When looking at the path coefficients and their P values of the variables connected to the income of 

a household, the results show that there is no statistically significant relation between household 

income and the degree of urbanization. However, both other variables connected to the household 

income do show a statistically significant result. The results show that the income of a household 

increases with the education level. Furthermore, single-parent households and couples with and 

without children have higher household incomes than single-person households.  

While most of the variables connected to the latent variable energy poverty showed a statistically 

significant relation in the SEM model, this was not the case for all variables or variable categories. 

Regarding the degree of urbanisation, the results show that hardy and moderately urbanised have no 

statistically significant difference in energy poverty compared to areas that are not urbanised. 

However, the model shows that people living in strongly and extremely urbanised areas experience 

less energy poverty. The results of the estimations show that energy poverty does not differ for those 

having a hbo or wo-bachelor or master’s degree compared to those who have a primary education 

degree. However, according to the results, people with a vmbo, mbo1, havo, vwo or mbo degree 

experience slightly less energy poverty. The path coefficients between all age categories and energy 

poverty included in the SEM model are statistically significant. All categories included in the model 

have less energy poverty than the reference category of people aged 34 or younger. This effect 

decreases when age increases up to the category of people aged between 55 and 64. For people older 

than 64, the amount of energy poverty decreases again, and the least amount of energy poverty was 

estimated for those aged 75 years or older. Both the path coefficients between energy poverty and 

energy expenses and income are statistically significant. Finally. the results showed that energy 

poverty increases when energy expenses increase and decreases when income increases. 
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In order to assess the validity of the model, only the VIF values could be checked. The convergent 

validity of the model could not be estimated because the created model only includes a formative 

construct. Looking at the VIF, the indicator collinearity could be determined. The results of the VIF 

estimates show a value of 1.0 for all variables included in the SEM model. Because these values are all 

less than 3.3 there are no potential issues with the indicator collinearity in the created model. 

4.5 Energy poverty risk prediction model 
The path coefficients that were estimated in the SEM model can be interpreted as standardised 

regression coefficients. Using these standardised regression coefficients and the standardised values 

of the continuous variables, a new model could be made that can be used to predict the energy 

poverty of a household based on the variables included in the model. An energy poverty prediction 

model that includes all statistically significant variables and relations was created in Excel. This model 

includes both direct and indirect effects of the included variables to determine the risk of experience 

energy poverty that a household has. Using multiple formulas and references, the created energy 

poverty model can predict the energy poverty risk based on twelve input cells. Figure 12 shows an 

example response of the input cells that the energy poverty prediction model uses to predict the 

energy poverty risk of a respondent. 

 
Figure 12. Example response input cells energy poverty risk model 

The prediction model is aimed at housing corporations or policy makers that, when using the 

prediction model, can note the exact values of the metric variables in the input cells. For all categorical 

variables in the model, a dropdown menu can be opened and the most appropriate category can be 

selected. When all cells have an input value, the model calculates an energy poverty risk index (EPRI). 

The EPRI can be used by housing corporations and policy makers to analyse and identify energy 

poverty risks within a housing stock and evaluate the effect of policies on the energy poverty risk. 

Using the macro function in Excel, a macro was written where all input cells were “answered” one-by-

one by all respondents in the original WoON 2021. The results of the calculations of the EPRI for all 

respondents in the WoON 2021 dataset used in this research are shown in figure 13. This figure shows 

that the results of EPRI for all WoON 2021 respondents show a relatively normal distribution.  
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Figure 13. Results EPRI WoON 2021 respondents 

In order to interpret the results of the EPRI, the results were compared to the four relevant existing 

energy poverty indicators described previously. The respondents of the dataset were given a number, 

ranging from 0 to 4, based on whether they have energy poverty based on the existing energy poverty 

indicators. If a respondent has energy poverty according to two of these indicators, they will score a 

2. If the respondents have energy poverty according to all existing indicators, they will score a 4. When 

comparing how respondents score on the EPRI and the existing energy poverty indicators, a clear 

relation can be seen. This relation, visible in figure 14, shows that when the EPRI increases, the 

probability of having energy poverty according to the other energy poverty indicators increases too.  

  
Figure 14. EPRI compared to existing energy poverty indicators. 

Respondents that have energy poverty according to none of the existing energy poverty indicators 

score an average of -0.556 on the EPRI. Respondents that have energy poverty according to 1, 2, or 3 

of the existing indicators on average score 0.100, 0.373, and 0.544 on the EPRI, respectively. Finally, 

respondents that have energy poverty according to all the existing energy poverty indicators score an 

average of 0.876 on the EPRI. 
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4.6 High energy poverty risk group 
A descriptive analyse was conducted to determine the personal and dwelling characteristics of the 

respondents that have an increased risk of experiencing energy poverty. After the EPRI of all 

respondents in the dataset was calculated, all respondents with an EPRI over 0.373 were selected for 

the descriptive analysis. These respondents were selected since an EPRI value over 0.373 means that 

these respondents are likely to have energy poverty according to two or more of the existing indicators 

and can therefore be considered to have an increased energy poverty risk. The descriptive 

characteristics of these high EPRI respondents can be compared to the descriptive characteristics of 

all respondents to determine the personal and dwelling characteristics of the respondents with an 

increased energy poverty risk. The value category percentages of the personal characteristics of all 

respondents and those with a high EPRI are shown in appendix 22. 

All figures in this section enable a comparison between the respondents with a high EPRI and all 

respondents in the WoON dataset. In these figures, both the WoON 2021 and high EPRI groups add 

up to 100%. By comparing the value categories of both these groups represented on the y-axis of the 

figures, it can be determined which value categories are overrepresented in the high EPRI group. The 

percentages of the value categories of the education level of the respondents are shown in figure 15.  

 
Figure 15. Education level value category percentages WoON 2021 respondents and respondents with 

high EPRI 

When comparing the education levels of all respondents of the dataset to those with an increased 

EPRI, it can be seen that respondents with a primary, VMBO or MBO1 education are overrepresented 

in the group with a high EPRI. Additionally, the results in figure 15 show that there are relatively few 

HBO/WO-bachelor and master respondents that have a high EPRI.  

The percentages of the value categories of the age of all respondents and those with a high EPRI are 

shown in figure 16. 
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Figure 16. Age value category percentages WoON 2021 respondents and respondents with a high EPRI 

When comparing these percentages of the value categories, it can be seen that respondents aged 34 

or younger or between 55 and 64 are especially overrepresented in the group of respondents with a 

high EPRI Additionally, there are relatively few respondents with a high EPRI aged between 35 and 44 

or 65 and older.  

The final personal characteristic of which the value categories of respondents with a high EPRI were 

compared to respondents is the household type. Figure 17 shows the percentages of the value 

categories of the household type for all respondents and those with a high EPRI. 

 
Figure 17. Household type value category percentages WoON 2021 respondents and respondents with 

a high EPRI 

From the results in figure 17, it can be seen that single-person and single-parent households are 

overrepresented in the group of respondents with a high energy poverty risk factor. On the other 

hand, couples without children are extremely underrepresented in the high EPRI group while the 

percentage of couples with children is equal in both respondent groups.  
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After the personal characteristics of those with a high EPRI were compared to the entire WoON 2021 

sample, the same could be done for the dwelling characteristics of these respondents. A descriptive 

analysis of the dwelling characteristics was conducted and the value category percentages of the 

dwelling characteristics of all respondents and those with a high EPRI are shown in appendix 23.  

The percentages of value categories of the degree of urbanisation are shown in figure 18.  

 
Figure 18. Degree of urbanisation value category percentages WoON 2021 respondents and 

respondents with high EPRI 

When comparing the group with a high EPRI to the entire sample, it can be seen that all degrees of 

urbanisation of average and lower are overrepresented in the high energy poverty risk group. The 

results show that dwellings in areas with a high and especially a very high degree of urbanisation are 

relatively underrepresented in the high energy poverty risk group.  
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Figure 19 shows the value categories of the dwelling sizes of all respondents and those with a high 

EPRI  

 
Figure 19. Dwelling size value category percentages WoON 2021 respondents and respondents with 

high EPRI 

When comparing the respondents with a high EPRI to all respondents it can be seen that, except for 

the largest dwelling sizes, all dwelling size categories are underrepresented with the group with a high 

EPRI. Dwellings with a dwelling size of 100m2 or more are relatively overrepresented in the high EPRI 

respondents group.  

The descriptive statistics of the dwelling construction year value categories of the respondents with a 

high EPRI and all respondents are shown in figure 20. 

 
Figure 20. Dwelling construction year value category percentages WoON 2021 respondents and 

respondents with high EPRI 
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When analysing the results of the descriptive analysis, it can be seen that dwellings constructed before 

1992 are overrepresented in the group with a high EPRI. Dwellings constructed between 1965 and 

1974 are especially overrepresented while there are relatively few respondents with a high energy 

poverty risk factor that live in dwellings constructed after 1991.  

Figure 21 shows the value categories of the dwelling types of all respondents and of those with a high 

EPRI.  

 
Figure 21. Dwelling type value category percentages WoON 2021 respondents and respondents with 

high EPRI 

The results of the bivariate analysis show that relatively few respondents with a EPRI live in apartment 

dwellings when comparing to the entire WoON 2021 sample. On the other hand, there relatively more 

respondents living in terraced and especially in semi-detached dwellings in the high EPRI group.  

The final dwelling characteristic that could be analysed for differences between the entire sample and 

the high energy poverty risk group is the presence of solar panels. The value category percentages of 

the presence of solar panels for the entire sample and the high energy poverty risk group is shown in 

figure 22. 
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Figure 22. Solar panels category percentages WoON 2021 respondents and respondents with high 

EPRI 

When comparing the value percentages of the presence of solar panels for all respondents and those 

with a high EPRI, no major differences can be seen. However, respondents with a high EPRI live in 

relatively less dwellings with solar panels compared to the entire WoON 2021 sample. 

Concluding this section, the results of the descriptive analysis and comparison between the WoON 

2021 sample and the respondents with a high EPRI give several insights. People with a relatively low 

education aged under 35 or between 45 and 64 are relatively overrepresented in the high EPRI group. 

Single-person and single-parent households are additionally relatively overrepresented when 

comparing to the entire WoON 2021 sample. The respondents with a high EPRI live in relatively less 

urbanised areas and large dwellings compared to the entire sample. Additionally, respondents living 

in dwellings constructed before 1992 show higher percentages in the high EPRI group while only a few 

respondents in this group live in dwellings constructed after 1991. Relatively few respondents with a 

high EPRI live in apartment dwellings while relatively many of these respondents live in semi-detached 

dwellings. Finally, there are relatively few high EPRI respondents that live in dwellings with solar panels 

compared to the entire WoON 2021 sample.  

4.7 Policy effect 
In this section the effect of policies developed to reduce energy poverty will be evaluated based on 

the developed EPRI. The effects of the policies that will be analysed, will result in changes from the 

already determined base scenario in the developed energy risk prediction model. By analysing these 

differences, it can be identified how effective the policies are in reducing the energy poverty risk. The 

current Dutch energy poverty policy is primarily aimed to reduce or counteract increasing energy 

expenditure of households. Using the EPRI, the effect of increasing energy expenditures on the energy 

poverty risk of households could be determined. Figure 23 shows the number of households in 

different energy poverty risk classes in the base scenario and the scenarios in which the energy 

expenses increase with 50 and 100%.  
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Figure 23. EPRI classes for households, base scenario and scenarios with 50 and 100% energy 

expenditure increases 

In order to mitigate energy poverty, the Dutch government has introduced an energy allowance. This 

allowance is financial measure of 1,300 euro aimed to compensate for the increased energy costs and 

alleviate energy burdens for vulnerable households with a low income (Rijksoverheid, n.d.b). To 

receive this allowance, an applicant must have an income below a certain threshold. This threshold is 

different for various household compositions and age groups. To determine which respondents in the 

dataset are granted this allowance, KNIME was used to split the respondents based on their household 

type and age. Afterwards, KNIME was used to assess for all groups if they were above or below the 

set thresholds of their groups and therefore if they were granted the energy allowance. If the 

allowance was granted for a household, this was modelled in the data by adding 1,300 euro to the 

income of this household in the prediction model. Based on the incomes of the households in the 

WoON 2021 dataset, 1,221 households are granted an energy allowance when the current rules for 

this allowance are followed. This means that 14.2% of the households in the dataset will be given the 

1,300-euro energy allowance. After these households were given the 1,300-euro additional income, 

the EPRI prediction model was calculated again. The result of the calculated scenario with the energy 

allowances is shown in figure 24. 
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Figure 24. EPRI classes for households, base and energy allowance scenario 

The results in figure 24 show that the energy allowance causes a slight reduction in the energy poverty 

risk. However, the effect of the energy allowance is relatively small since it is only granted to a small 

proportion of all households. When analysing the results in more detail, it can be seen that some 

households with no or a low energy poverty risk are still granted the energy allowance because they 

have a low income. Furthermore, the energy allowance is not granted to all households with a high 

energy poverty risk since some have a monthly income above 1,300 euros. The effect of the energy 

allowance policy does not seem optimal because the targeted vulnerable households are not always 

granted the allowance. A second disadvantage of this policy is that the allowance is only granted once. 

Because of this, the energy poverty risk is only temporarily reduced and will return when the 

allowance is spent.  

Contrary to a financial measure, the effect of improving the energy performance of the dwelling stock 

on energy poverty is more aimed at the long term. Improving the energy performance of the dwelling 

stock was proposed in the new package of measures by the Dutch minister for climate at the beginning 

of May 2023. Where the energy allowance to reduce energy poverty is arranged by the government, 

improving the energy performance of the housing corporation stock lies with the housing corporations 

themselves. Social housing tenants are therefore dependent on the willingness of the housing 

corporations to improve the energy performance of their housing stock. Next to reducing energy 

poverty, other goals of improving the dwelling stock are contributing to the energy transition and 

reducing the CO2 emissions in the long term (Ürge-Vorsatz & Tirado Herrero, 2012). Often, measures 

to improve the energy performance of dwellings include insulation, making the dwellings gas-free, 

and installing solar panels so the dwellings can generate their own energy. A scenario was created to 

analyse the effect of improving the energy performance of dwellings. For this scenario, KNIME was 

used to determine how much additional electricity all respondents in the dataset would use to 

compensate for the reduction in gas usage. For this, it was assumed that all households would keep 

the same energy usage. However, in the new scenario all energy was provided through electricity 

while the gas usage went to zero. Afterwards, the effect of the installation of solar panels was 

modelled in the dataset by adding solar panels to all dwellings in the data that did not already have 

solar panels. Of all respondents in the dataset, 571 respondents already lived in a gas-free dwelling 

and 1,266 already had solar panels installed. This scenario will not affect 60 respondents in the dataset 

since these respondents already lived in gas-free dwellings with solar panels. After the changes to the 
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dataset were made in KNIME, the energy poverty risk prediction macro was run again for the energy 

improvement scenario. The result of this calculation is shown in figure 25. 

 
Figure 25. EPRI classes for households, base and energy improvement scenario 

The results of the prediction show that when the energy performance of the dwellings is improved 

through the described measures, the energy poverty risk will decrease. While some respondents 

remain with an energy poverty risk, this risk is much smaller than in the base scenario. The energy 

poverty risk has especially been reduced in the higher risk categories of the base scenario. While the 

energy poverty risks are reduced significantly more in this scenario compared to the energy allowance 

scenario, the costs for improving the energy performance of the dwellings are much higher than a 

one-off energy allowance for households. Because housing corporations will not yield a return on their 

energy improvement investments through energy savings, it is crucial to convince housing 

corporations of the benefits of the of improving the energy performance of their housing stock. 

Improving the energy performance and sustainability of the housing stock is crucial for the energy 

transition, CO2 emission reduction and energy poverty risk reduction. Contrary to a financial measure, 

the effect of the improvements of the housing stock will yield remaining long-term effects. It is crucial 

that the dwellings of households with a high energy poverty risk are given priority when energy 

improvements are made. By doing this, the largest potential energy poverty risk reduction can be 

achieved, when there are few monetarily resources available for renovations. In order to do this 

effectively, it is crucial to clearly identify households and dwellings with a relatively high energy 

poverty risk. Because this risk is caused and influenced by both personal and dwelling characteristics, 

the in this research developed EPRI can be particularly suitable for this.   
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5. Conclusion & Discussion 

5.1 Conclusion 
The aim of this research was to increase knowledge about energy poverty and improve the method to 

identify energy poverty. Many different indicators are used to measure energy poverty, however most 

of these indicators are only based on income and expenses, while other personal and dwelling 

characteristics are often not included. A literature study was performed to analyse the existing energy 

poverty indicators and determine the variables that have a potential relation with energy poverty. 

After the literature study, the data was collected and prepared for further analyses. A descriptive 

analysis was performed to determine the frequencies and percentages of all value categories and 

remove value categories with too few respondents. Next, multiple bivariate analyses were performed 

to determine how representative the data sample was for the entire population and to analyse 

relations between the predictor variables. Using an EFA it was determined if all existing energy poverty 

indicators measure a common latent construct and the amount of variance that these indicators cause 

in their common latent construct. A SEM was created to calculate path coefficients between all 

variables in the conceptual model to determine both direct and indirect effects on energy poverty. 

Using the path coefficients determined by the SEM, the EPRI prediction model was made in Excel. 

Using Excel macros, the EPRI could be determined for all respondents in the dataset and the effects 

of certain policies on the energy poverty risk could be analysed. The results gained in this research will 

all help to answer the created research questions. 

• Which indicators are currently used in the literature to measure energy poverty? 

During the literature study, several indicators were identified that are currently used to measure 

energy poverty. In general, these existing indicators can be grouped as consensual approaches or 

expenditure approaches. Consensual approaches are subjective indicators and expenditure 

approaches are objective indicators that are measured against a critical threshold to define if someone 

has energy poverty. Five expenditure approaches to measure energy poverty were identified from the 

literature: the EQ, LIHC, MIS, HCOR and LILEQ indicators. The EQ is the most commonly used indicator 

to measure energy poverty in existing research. The EQ is easy to calculate however it only includes 

the income and energy expenditure. The LIHC, MIS and HCOR energy poverty indicators were all 

developed to represent energy poverty in a more detailed way and be an improvement indicator for 

energy poverty over the EQ. The LIHC, MIS and HCOR all include more factors than the EQ however, 

like the EQ, they all do not take the energy performance of dwellings into account. The LILEQ indicator 

was developed to take the energy performance of dwellings into account however this indicator does 

not include the actual energy expenses of a household. The energy poverty indicators identified in the 

literature study all have their own pros and cons however none of the existing energy poverty 

indicators include personal characteristics. While all existing energy poverty indicators are developed 

to measure the same concept, energy poverty, the average amount of energy poverty measured by 

these indicators varies greatly. An EFA was performed to determine if all existing energy poverty 

indicators measured the same latent concept (energy poverty). The results of the EFA showed that all 

indicators had a factor loading larger than 0.8 except for the MIS indicator. Because this indicator has 

an EFA factor loading less than 0.4, it can be concluded that all existing energy poverty indicators 

measure the same latent concept except for the MIS indicator. After this indicator was removed from 

the EFA, all remaining energy poverty indicators predict 61.212% of the variance of the common latent 

construct (energy poverty).  
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• Which factors are significantly related to energy poverty? 

Based the literature review, the expected relations between several factors and energy poverty were 

hypothesised. For all factors identified in the literature review that were present in the dataset, these 

hypothesised relations were confirmed or rejected in the CFA of the SEM. It was expected that income 

would have a negative effect on energy poverty and this was confirmed by the SEM that determined 

a negative path coefficient between income and energy poverty. Furthermore, the energy expenditure 

and dwelling size were hypothesised to have a positive effect on energy poverty and this was again 

confirmed by the SEM. It was expected that residents of detached and semi-detached dwellings would 

have a higher energy poverty risk. While this could not be tested for detached dwellings since these 

were not included in the final data, this hypothesis could be confirmed for semi-detached dwellings. 

Additionally, based on the SEM path coefficients, it can be concluded that residents of terraced 

dwellings have a higher risk of experiencing energy poverty compared to residents of apartments. 

Based on the literature review, it was hypothesised that the dwelling construction year would have a 

negative relation with energy poverty. The results of the SEM confirm this hypothesis; however, no 

differences were found between dwellings constructed between 1946 and 1965 and dwellings 

constructed before 1946. It was hypothesised that the degree of urbanisation would have a negative 

relation with energy poverty. This hypothesis was partly confirmed, since a negative relation was 

found. However, differences were only measured for the highest two degrees of urbanisation and not 

for the other value categories. Additionally, the results showed that the degree of urbanisation does 

not have an indirect effect on energy poverty though income, since the relations between the degrees 

of urbanisation and income were all non-significant. The SEM confirmed the hypothesis that single-

person and single-parent households would have a higher energy poverty risk. It was hypothesised 

that the education level would have a negative relation with the energy poverty risk. Based on the 

results of the SEM this hypothesis can be rejected. Although the energy poverty risk factor decreases 

slightly when education level increases from primary education to vmbo, havo, vwo or mbo, this 

relation does not significantly continue for the higher education levels. Finally, the relation between 

energy poverty and age was considered a research gap due to many contradictory findings in existing 

studies. Based on the results of the SEM, it can be concluded that there is no linear relation between 

age and energy poverty risk. While the energy poverty risk is higher for people aged 34 or younger or 

between 45 and 65, the energy poverty risk was lower for people aged between 35 and 44 and all 

people aged 65 or older.   

• What are the characteristics of households with a high energy poverty risk? 

Based on the analysis of the respondents with a high EPRI, it can be determined what the common 

characteristics of this group are. Based on the results of this analysis, it can be concluded that the 

energy poverty risk is highest for single-person and single-parent households with a relatively low 

education level. Regarding age, there is no single age group with a highest energy poverty risk. 

However, the energy poverty risk is relatively low for respondents aged over 65. Dwelling 

characteristics of households with a relatively high energy poverty risk are semi-detached dwellings 

that larger than 99m2 and older than 1992. The dwellings of households with a relatively high energy 

poverty risk commonly have no solar panels and are located in areas with average, low or no 

urbanisation.   
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• What advise can be given to reduce the energy poverty risk based on the created model? 

The results of the analysis of the current and alternative policies show that incorrect choices may be 

currently made to reduce energy poverty. The Dutch government currently invests heavily in energy 

allowances for the relatively poor and vulnerable households. However, because only the income of 

households is considered, this energy allowance does not always reach the target group and may 

therefore also sometimes be granted to households with a relatively low energy poverty risk. Partly 

caused by this, the effect of an energy allowance to reduce energy poverty remains relatively limited. 

Furthermore, this financial measure does not solve the problem of energy poverty in the long term 

since households will have energy poverty again when the energy allowance expires. 

In the long term, the results show that improving the energy performance of the housing stock can 

contribute more to reducing energy poverty. Even though these improvements cost a relatively large 

amount of money in the short term, the effect of this policy, unlike a financial measure, is more 

effective in reducing energy poverty in the long term. Improving the entire housing stock to reduce 

energy poverty will take a long time, which is why it is important to prioritise the energy improvement 

of certain homes. By focusing more on project planning, the dwellings that score worst on the EPRI 

can be prioritised for energy improvements. Improving the relatively low-scoring dwellings first will 

yield the largest reduction in energy poverty risk in the short term.  

• Can a new model be created that predicts the risk of energy poverty? 

In this research a new model was created that predicts the risk of energy poverty, the EPRI. The 

development of this model started from the identification of relevant variables in the literature study. 

Because energy poverty is a latent construct, SEM provided the model with relations and path 

coefficients of both direct and indirect effects. Using these path coefficients, a calculation model could 

be created in Excel that could determine the energy poverty risk factor for a single household, or for 

the entire dataset using Excel macros. Contrary to the existing energy poverty indicators, the EPRI 

includes both multiple personal and dwelling characteristics. Furthermore, while the existing energy 

poverty indicators are measured on a dichotomous scale, the EPRI predicts the risk of energy poverty 

on a continues scale. This enables the user of the indicator to interpret in more detail what the effect 

of policies on energy poverty risk may be.  
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5.2 Discussion 
The results of this research show that it is possible to develop an elaborate energy poverty risk 

indicator. The developed indicator facilitates a simple and clear identification of risk groups and 

analysis of policy effects. Contrary to the existing energy poverty indicators, the EPRI includes more 

factors to predict energy poverty. Because the EPRI predicts energy poverty risk as a continuous value, 

it enables a more accurate evaluation of the effect of policies compared to the existing energy 

indicators. The existing energy poverty indicators only predict “energy poverty or no energy poverty” 

and can therefore not predict how close a household is to experiencing energy poverty or how close 

they are to avoid energy poverty.  

Important stakeholders for whom the results of this research can be relevant are: housing 

corporations, tenants of housing corporations and local and national governments. Housing 

corporations can use the EPRI to identify energy poverty risks among their housing stock and tenants. 

This knowledge can then be used to prioritise renovations to improve the energetic performance of 

the dwellings with a high EPRI. Because of this, the highest reduction in energy poverty risk can be 

achieved with the available budget for renovations. This can be beneficial for tenants that have a high 

energy poverty risk and are therefore in urgent need to have their dwelling renovated. The correct 

identification of the energy poverty risk may improve their housing situation, especially for tenants 

that have an elevated risk of suffering from energy poverty.  

Similarly to housing corporations, the government can use the EPRI to identify the energy poverty 

risks of dwellings in certain regions. If the government has a clear overview of where there are high or 

low energy poverty risks, they can more effectively target their allowances or other subsidies. Because 

of this, especially vulnerable people will be helped as effectively as possible with the resources that 

are made available to reduce energy poverty. The government can also use subsidies to encourage 

homeowners or housing corporations to improve the energy performance of their dwellings.  

The EPRI can be used to improve rental policies. Housing corporations can prioritise households with 

an increased EPRI when assigning dwellings to tenants. These high EPRI scoring tenants can then be 

assigned to low EPRI scoring dwellings in order avoid high total EPRI scores. Furthermore, the EPRI can 

be used to elaborate the rent points system used to determine the maximal rent price for a dwelling. 

By elaborating the rent points system with the EPRI score, more rent can be asked for a dwelling with 

a low EPRI score and less rent can be asked for a dwelling with a high EPRI score.  

Housing corporations can additionally use the EPRI to determine which households could benefit from 

the advice of an energy coach. An energy coach can then advise the households with a high EPRI score 

how they can reduce their energy use by changing their energy use habits. Additionally, the energy 

coaches can advise housing corporations on improving energy performance of their dwellings if 

necessary. 
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Some problems were encountered while conducting this research. During the literature review, it 

quickly became clear that there are many definitions of energy poverty for different global contexts. 

Furthermore, the number of studies conducted on energy poverty in the Netherlands is still relatively 

limited, although more articles on energy poverty have been published in the Netherlands in recent 

years. A further limitation of this research is that not all desired variables were present in the available 

data. If this data would have been available, it would have been interesting to include the effect of the 

insulation and heating systems of dwellings, and energy prices on the energy poverty risk. Since the 

locations of the dwellings at the address level are not present in the WoON 2021 dataset, it was not 

possible to analyse where the households with a high EPRI live and determine if there is a relation 

between location and an increased energy poverty risk. 

A further limitation of this research is the relatively limited way to check the internal validity of the 

SEM model. The validity of formative SEM models can be assessed through the convergent validity, 

indicator collinearity and the significance of the indicator weights determined by the SEM model. 

However, for this research it was not possible to analyse the convergent validity because the created 

SEM model does not contain both formative and reflective constructs. The significances of the 

indicator weights could easily be checked and the indicator weights that were not statistically 

significant were not included in the prediction model. The indicator collinearity could be assessed by 

using the VIF and the VIF results showed that there were no problems with the indicator collinearity 

in the model. Based on the tested validity indicators, it can be determined that the validity of the 

model was good. However, the interpretation of the internal validity remains difficult because of the 

relatively few ways for it to be assessed. 

Looking at the external validity of this research, it can be determined that the results of this research 

can be replicated for other housing situations and respondents such as those living in the private rental 

sector or those living in owner-occupied dwellings. However, when predicting the EPRI values for 

these other housing situations, it can be recommended to use the methods used in this research to 

calculate new coefficients for the EPRI prediction. The used methods can additionally be used to 

determine coefficients for EPRI prediction models for other developed countries since incomes and 

expenditures can vary widely between developed countries.  

Several recommendations for future research can be made. Comparable research can be executed 

with a focus on dwellings in the private rental sector or owner-occupied dwellings. If these studies are 

performed, it will additionally be possible to analyse which of these tenure sectors has the highest 

average energy poverty risk. It would be interesting to perform this research again if a more elaborate 

dataset becomes available.. This would allow for a comparison with this research in order to 

determine if comparable results would have been obtained. Furthermore, the prediction model can 

be expanded with insulation types, heating systems and energy prices. If other relevant factors, such 

as personal or dwelling characteristics, for energy poverty are discovered in future literature review 

or studies, it would be interesting to expand the model with these factors. They will further detail the 

results and will make the energy poverty risk prediction value more reliable. When more knowledge 

about energy poverty becomes available, the energy poverty risk model can be improved further. With 

this knowledge, ever better advise can be given to stakeholders, strengthening the reduction of energy 

poverty.  
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Appendices 
Appendix 1: Characteristics identified in the literature review and their expected effect on energy 

poverty 

Characteristic/feature Expected effect on energy poverty 

Economic characteristics 

Energy prices Positive 

Rent prices Positive 

Income Negative 

Housing costs Positive 

Dwelling characteristics 

Energy performance Negative 

Dwelling type Energy poverty occurs more often for 
households living in detached and semi-
detached dwellings 

Dwelling size Positive 

Dwelling construction year Negative 

Degree of urbanisation Negative 

Socio-demographic characteristics 

Household type Energy poverty occurs more often for single-
person and single-parent households 

Age Research gap (caused by the many 
contradictory findings in the existing literature) 

Education level Negative 

Tenure Households living in rented dwellings are more 
likely to experience energy poverty 

Appendix 2: Measurement scales of the selected variables 

Variables Measurement scale 

Income Ratio 

Household type Nominal 

Education level Ordinal 

Age Ordinal 

Degree of urbanisation Ordinal 

Dwelling size Ordinal 

Dwelling construction year Ordinal 

Dwelling type Nominal 

Solar panels Nominal (dichotomous)  

Dwelling energy use Ratio 

Energy expenditure Ratio 

Other housing costs Ratio 
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Appendix 3: Categorical variables descriptives 

Household type 

 Frequency (count) Percent 

Single-person 4,751 55.3 

Single-parent with children 909 10.6 

Couple without children 2,032 23.7 

Couple with children 895 10.4 

Total 8,587 100.0 

Education level 

 Frequency (count) Percent 

Primary education 1,584 18.4 

VMBO, MBO1 2,302 26.8 

HAVO, VWO, MBO 3,020 35.2 

HBO/WO-bachelor 1,169 13.6 

HBO/WO-master 512 6.0 

Total 8,587 100.0 

Age 

 Frequency (count) Percent 

34 or younger 1,310 15.3 

35-44 1,040 12.1 

45-54 1,175 13.7 

55-64 1,587 18.5 

65-74 1,814 21.1 

75 or older 1,661 19.3 

Total 8,587 100.0 

Degree of urbanisation 

 Frequency (count) Percent 

No 603 7.0 

Low 1,115 13.0 

Average 1,430 16.7 

High 2,643 30.8 

Very high 2,796 32.6 

Total 8,587 100.0 

Dwelling Size 

 Frequency (count) Percent 

Less than 50m2 539 6.3 

50-74m2 2,316 27.0 

75-99m2 3,463 40.3 

100-149m2 2,269 26.4 

Total 8,587 100.0 

Dwelling construction year 

 Frequency (count) Percent 

1945 or older 689 8.0 

1946-1964 1,516 17.7 

1965-1974 1,848 21.5 

1975-1991 2,466 28.7 

1992-2005 984 11.5 

2006 or newer 1,084 12.6 

Total 8,587 100.0 
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Dwelling type 

 Frequency (count) Percent 

Apartment 4,624 53.8 

Terraced  2,597 30.2 

Semi-detached  1,366 16.0 

Total 8,587 100.0 

Solar panels 

 Frequency (count) Percent 

Yes 1,269 14.8 

No 7,318 85.2 

Total 8,587 100.0 

Appendix 4: Chi-square test and symmetric measures solar panels – nominal variables 

Solar panels 

 Chi-square tests Symmetric measures 

 
Value df 

Asymptotic 
significance (2-

sided) 
 Value 

Approximate 
significance 

Household 
type 

Pearson 
chi-square 

89.295 3 0.000 Cramer’s V 0.097 0.000 

Dwelling 
type 

Pearson 
chi-square 

512.435 2 0.000 Cramer’s V 0.244 0.000 

Appendix 5: Chi-square test and symmetric measures household type – dwelling type 

Household type 

 Chi-square tests Symmetric measures 

 
Value df 

Asymptotic 
significance (2-

sided) 
 Value 

Approximate 
significance 

Dwelling 
type 

Pearson 
chi-square 

706.072 6 0.000 Cramer’s V 0.203 0.000 

Appendix 6: Mann-Whitney U-tests: solar panels - ordinal variables 

Mann-Whitney U-test: solar panels 

 Mann-Whitney U Z Asymp. Sig. (2-tailed) r2 

Education level 4,497,254.000 -1.859 0.063 0.000 

Age 4,395,575.000 -3.086 0.002 0.001 

Degree of urbanisation 3,457,047.500 -15.095 0.000 0.027 

Dwelling size 3,544,239.000 -14.241 0.000 0.024 

Dwelling construction year 4,457,761.500 -2.326 0.020 0.001 
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Appendix 7: Independent samples t-test solar panels – other housing costs 

Independent samples t-test: solar panels 

Group statistics 

 Solar panels N Mean Std. Deviation 

Other housing costs Yes 1,269 7,851.640 2,151.966 

 No 7,318 7,548.712 2,345.057 

Independent samples t-test: solar panels 

 Levene’s test for 
equality of variances 

t-test for equality of means Effect 
size 

F Sig. t df Sig. g 

Other 
housing 
costs 

Equal variances 
assumed 

7.730 0.005 4.298 8,585.000 0.000  

Equal variances 
not assumed 

  4.566 1,830.583 0.000 0.140 

Appendix 8: Kruskal-Wallis H-tests: household type - ordinal variables 

Kruskal-Wallis H-test: household type 

 Kruskal-Wallis H df Asymp. Sig. Ε2 

Education level 89.902 3 0.000 0.010 

Age 1,009.079 3 0.000 0.117 

Degree of urbanisation 89.881 3 0.000 0.010 

Dwelling size 948.868 3 0.000 0.110 

Dwelling construction year 64.578 3 0.000 0.007 

Appendix 9: Kruskal-Wallis H-tests dwelling type-ordinal variables 

Kruskal-Wallis H-test: dwelling type 

 Kruskal-Wallis H df Asymp. Sig. Ε2 

Education level 44.783 2 0.000 0.005 

Age 43.704 2 0.000 0.005 

Degree of urbanisation 1,363.033 2 0.000 0.153 

Dwelling size 2,792.531 2 0.000 0.313 

Dwelling construction year 265.941 2 0.000 0.029 
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Appendix 10: ANOVA household type – other housing costs 

Tests of Homogeneity of Variances 

  Levene Statistic df1 Sig. 

Other housing 
costs 

Based on Mean 3.678 3 0.012 

ANOVA 

  Sum of Squares df Mean Square F Sig. ω2 

Other 
housin
g costs 

Betwee
n 
groups 

7,432,670,691,309.00
0 

3 2,477,556,897,103.0
00 

548.39
0 

0.00
0 

0.16
1 

Within 
Groups 

38,776,941,622,242.0
00 

8,58
3 

4,517,877,388.000    

Total 46,209,612,313,552.0
00 

8,58
6 

    

Appendix 11: ANOVA dwelling type – other housing costs 

Tests of Homogeneity of Variances 

  Levene Statistic df1 Sig. 

Other housing costs Based on Mean 2.189 2 0.112 

ANOVA 

  Sum of Squares df Mean Square F Sig. ω2 

Other 
housin
g costs 

Betwee
n 
groups 

1,610,959,252,590.000 2 8,054,796,266.25
0 

155.03
2 

0.00
0 

0.03
5 

Within 
Groups 

44,598,653,060,962.00
0 

8,58
4 

5,195,556.042    

Total 46,209,612,313,552.00
0 

8,58
6 

    

Appendix 12: Spearman correlations ordinal variables 

Correlations 

Spearman’s rho  Education 
level 

Age Degree of 
urbanisati

on 

Dwelling 
size 

Dwelling 
construction 

year 

Education level Correlation 
coefficient 1.000     

Sig. (2-tailed) .     

Age Correlation 
coefficient -0.392 1.000    

Sig. (2-tailed) 0.000 .    

Degree of 
urbanisation 

Correlation 
coefficient 0.113 -0.110 1.000   

Sig. (2-tailed) 0.000 0.000 .   

Dwelling size Correlation 
coefficient -0.072 0.143 -0.299 1.000  

Sig. (2-tailed) 0.000 0.000 0.000 .  

Dwelling 
construction 
year 

Correlation 
coefficient 0.009 0.062 -0.146 0.055 1.000 

Sig. (2-tailed) 0.382 0.000 0.000 0.000 . 
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Appendix 13: Spearman correlations ordinal - ratio variables 

Correlations 

Spearman’s rho  Other housing costs 

Education level Correlation coefficient 0.143 

Sig. (2-tailed) 0.000 

Age Correlation coefficient -0.003 

Sig. (2-tailed) 0.780 

Degree of urbanisation Correlation coefficient -0.067 

Sig. (2-tailed) 0.000 

Dwelling size Correlation coefficient 0.387 

Sig. (2-tailed) 0.000 

Dwelling construction year Correlation coefficient 0.164 

Sig. (2-tailed) 0.000 

Appendix 14: Spearman correlations age - endogenous variables 

Correlations 

 Electricity usage Gas usage Income Energy expenses 

Age Correlation coefficient -0.004 0.086 -0.109 0.058 

Sig. (2-tailed) 0.689 0.000 0.000 0.000 

Appendix 15: Pearson correlations other housing costs - endogenous variables 

Correlations 

 Electricity usage Gas usage Income Energy expenses 

Other 
housing 
costs 

Correlation 
coefficient 

0.328 0.174 0.584 0.294 

Sig. (2-tailed) 0.000 0.000 0.000 0.000 

Appendix 16: KMO and Bartlett’s test EFA 

KMO and Bartlett’s test 

Kaiser-Meyer-Olkin measure of sampling adequacy Bartlett’s test of sphericity 

Approx. Chi-square df Sig. 

0.575 22,984.982 10 0.000 

Appendix 17: Correlation matrix EFA 

Correlation matrix 

 EQ LIHC MIS HCOR LILEQ 

EQ 
Correlation 1.000     

Sig. (1-tailed) .     

LIHC 
Correlation 0.456 1.000    

Sig. (1-tailed) 0.000 .    

MIS 
Correlation -0.002 0.001 1.000   

Sig. (1-tailed) 0.416 0.445 .   

HCOR 
Correlation 0.883 0.244 -0.018 1.000  

Sig. (1-tailed) 0.000 0.000 0.041 .  

LILEQ 
Correlation 0.452 0.680 0.012 0.274 1.000 

Sig. (1-tailed) 0.000 0.000 0.134 0.000 . 

Determinant = 0.076 
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Appendix 18: Communalities EFA 

Communalities 

 Initial Extraction 

EQ 1.000 0.945 

LIHC 1.000 0.831 

MIS 1.000 0.045 

HCOR 1.000 0.950 

LILEQ 1.000 0.825 

Extraction method: principal component analysis 

Appendix 19: Total variance explained EFA 

Total variance explained 

Initial eigenvalues Extraction sums of squared loadings 

Component Total % of variance Cumulative % Total % of variance Cumulative % 

1 2.509 50.180 50.180 2.509 50.180 50.180 

2 1.087 21.745 71.926 1.087 21.745 71.926 

3 0.996 19.928 91.853    

4 0.321 6.412 98.265    

5 0.087 1.735 100.000    

Extraction method: principal component analysis 

Appendix 20: Component matrix EFA 

Component matrix 

 EQ LIHC MIS HCOR LILEQ 

Component 1 0.901 0.733 -0.004 0.781 0.742 

Extraction method: principal component analysis 

Appendix 21: Total variance explained second EFA 

Total variance explained 

Initial eigenvalues Extraction sums of squared loadings 

Component Total % of variance Cumulative % Total % of variance Cumulative % 

1 2.448 61.212 61.212 2.448 61.212 61.212 

2 1.010 25.245 86.456 1.010 25.245 86.456 

3 0.454 11.350 97.807    

4 0.088 2.193 100.000    

Extraction method: principal component analysis 
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Appendix 22: Personal characteristics value category percentages WoON 2021 respondents and 

respondents with a high EPRI 

Education level 

 WoON 2021 High EPRI 

Primary education 18.4 31.1 

VMBO, MBO1 26.8 33.2 

HAVO, VWO, MBO 35.2 30.2 

HBO/WO-bachelor 13.6 4.1 

HBO/WO-master 6.0 1.4 

Age 

 WoON 2021 High EPRI 

34 or younger 15.2 21.5 

35-44 12.1 7.7 

45-54 13.7 15.4 

55-64 18.5 26.0 

65-74 21.2 16.3 

75 or older 19.3 13.1 

Household type 

 WoON 2021 High EPRI 

Single-person 55.3 72.8 

Single-parent with children 10.3 12.8 

Couple without children 23.0 4.2 

Couple with children 10.2 10.2 

Appendix 23: Dwelling characteristics value category percentages WoON 2021 respondents and 

respondents with a high EPRI 

Degree of urbanisation 

 WoON 2021 High EPRI 

No 7.0 10.9 

Low 13.0 19.4 

Average 16.6 21.9 

High  30.8 26.4 

Very high 32.6 21.4 

Dwelling size 

 WoON 2021 High EPRI 

Less than 50m2 6.5 5.7 

50-74m2 26.9 18.9 

75-99m2 40.1 38.9 

100m2 or more 26.5 36.5 

Dwelling construction year 

 WoON 2021 High EPRI 

1945 or older 8.2 9.0 

1946-1964 17.7 23.5 

1965-1974 21.5 27.7 

1975-1991 28.4 29.8 

1992-2005 11.5 3.9 

2006 or newer 12.7 6.1 

Dwelling type 

 WoON 2021 High EPRI 
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Apartment 53.8 37.2 

Terraced 30.3 35.4 

Semi-detached 15.9 27.4 

Solar panels 

Solar panels WoON 2021 High EPRI 

Yes 14.8 10.7 

No 85.2 89.3 

 


